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A B S T R A C T

Background: The presence of a gap between adjacent detector blocks in Positron Emission Tomography (PET) 
scanners introduces a partial loss of projection data, which can degrade the image quality and quantitative 
accuracy of reconstructed PET images. This study suggests a novel approach for filling missing data from 
sinograms generated from preclinical PET scanners using a combination of an inpainting method and the Pix2Pix 
conditional generative adversarial network (cGAN).
Materials and methods: Twenty mice and Image Quality (IQ) phantom were scanned by a small animal Xtrim PET 
scanner, resulting in 7500 raw sinograms used for network training and test datasets. The absence of gap-free 
sinograms as the target for neural network training was a challenge. This issue was solved by artificially 
generating gap-free sinograms from the original sinogram. To assess the performance of the proposed approach, 
the sinograms were reconstructed using the ordered subset expectation maximization (OSEM) algorithm. The 
overall performance of the proposed network and the quality of the resulting images were quantitatively 
compared using various metrics, including the root mean squared error (RMSE), structural similarity index 
(SSIM), peak signal-to-noise ratio (PSNR), contrast-to-noise ratio (CNR), and signal-to-noise ratio (SNR).
Results: The Pix2Pix cGAN approach achieved an RMSE of 9.34 × 10− 4 ± 5.7 × 10− 5 and an SSIM of 99.984 ×
10− 2 

± 1.8 × 10− 5, considering the corresponding inpainted sinograms as the target.
Conclusion: The proposed approach can retrieve missing sinogram data by learning a map derived from the whole 
sinogram compared to the adjacent pixels, which leads to better quantitative accuracy and improved recon
structed images.

1. Introduction

Small animal positron emission tomography (PET) scanners have 
become prominent due to the demand for animal models in biomedical 
research, such as preclinical pharmacology, genetics, and pathology 
studies [1]. The mechanical limitations in constructing PET scanners 
lead to a gap between two adjacent detector blocks, which is dominant 
in the acquired projection dataset, i.e., a sinogram [2]. Small gap regions 
in animal PET scanners account for more of the detection coverage area 
than large ring-diameter clinical PET machines. A gap of 17 mm has 
been shown to cause missing data for approximately 18 % of the data 

between two adjacent detector blocks in the ECAT high-resolution 
research tomography (HRRT) scanner. The presence of gap regions in 
projections noticeably diminishes the quantification accuracy of the 
reconstructed images, especially when using an analytical algorithm 
including filtered back-projection (FBP) [3]. This reduction may create 
streaking artifacts in the reconstructed image, which decreases the im
age’s spatial resolution [4].

Prior literature has proposed various techniques for gap-filling in the 
sinogram domain to recover corrupted images. Various interpolation 
techniques before reconstruction [5–9], inpainting techniques [5,10], 
rotating the scanner gantry during data acquisition [11], data-adaptive 
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filters in the transform domain (Discrete Cosine Transform (DCT) and 
Discrete Fourier Transform (DFT)) [2,11–15], constrained terms (such 
as wavelet and total variation) to reduce artifacts caused by gaps 
[16–20], compressed sensing (CS), a method of recovering images or 
signals from fewer measurements [10,21,22], dictionary learning [23], 
model-based algorithms [24–26], and techniques depending on the 
statistical framework, e.g., maximum likelihood expectation maximi
zation (MLEM) or maximum a posterior (MAP) [4,8,27,28], have been 
proposed.

Interpolation methods may produce defective data in gap regions, 
resulting in secondary artifacts in the reconstructed image [15]. DCT is 
another method that removes the frequency generated through the gap 
by a suitable filter based on the inverse transform, resulting in a free gap 
sinogram. In addition, different scanners have specific gap patterns that 
require different frequency filters, thus making them inconvenient for 
practical use [2]. The success of all the approaches mentioned above is 
related to the number of gap regions that fail at a higher level of sparsity 
[29].

Over the last few years, deep learning (DL) methods have shown 
remarkable capabilities in medical image processing and analysis. These 
applications include noise reduction, metal artifact reduction, image 
reconstruction, region of interest segmentation and classification, 
computer-aided diagnosis (CADx), and prognosis [30,31]. Both gener
ative adversarial networks (GANs) and convolutional neural networks 
(CNNs), deep learning models, are widely used in medical imaging. 
CNNs, developed in the 1980 s, are popular for visual recognition tasks. 
In contrast, GANs, introduced in 2014, were among the first models used 
for generative AI and can learn to create new data that follows a given 
pattern [31,32]. DL-based techniques have been demonstrated in several 
recent studies to fill the gap structure in PET sinogram data. Ground 
truth data was available in every instance to train the deep neural 
network; some focused on producing significant gaps as faulty detectors, 
while others created simulation data [3,4,29,33,34]. Inspired by these 
studies, we proposed a Pix2Pix conditional generative adversarial 
network (Pix2Pix cGAN) to retrieve and fill in missing data in preclinical 
PET sinograms caused by interblock gaps. Additionally, we modeled 
relatively significant gaps and applied this method [35]. According to 
some research, the Pix2Pix cGAN has potential in medical imaging, e.g., 
image denoising [36], segmentation [37], and other fields of image 
translation [38–42].

Therefore, this research aims to evaluate the feasibility of generating 
gap-free sinograms in a preclinical PET scanner to improve the image 
quality of preclinical PET scans using a Pix2Pix cGAN.

2. Material and methods

2.1. Scanner description

Xtrim PET is a commercial scanner designed for small animal PET 
imaging in preclinical research [43]. The design, functionality, and 
performance of this system, as well as its readout electronics, have been 
thoroughly covered in separate publications [44–46]. In summary, It 
consists of 10 block detectors arranged in a precise decagon-like 
configuration with an inner diameter of 160 mm and a length of 50.2 
mm along the axial direction. The axial and transaxial field of view are 
50.3 mm and 100 mm, respectively. The block is composed of 24 × 24 
arrays of Cerium-doped Lutetium Yttrium Orthosilicate (LYSO: Ce) 
scintillators, each measuring 2 × 2 × 10 mm3 with a pixel pitch of 2.1 
mm. These arrays are interfaced with 12 × 12 Silicon Photomultiplier 
(SiPM) pixels SiPM (Sensl ArrayC-30035-144P-PCB). There are 240 
crystals in each detector ring and 5760 LYSO scintillation crystals 
housed within the gantry. The reflector material, Barium Sulphate 
(BaSo4), with a thickness of 0.1 mm, was situated between the LYSO 
segments. Multiplexing boards, LYSO scintillators, and SiPM arrays are 
installed on the detector head. These parts are connected to the digital 
front-end (DFE) board by a flexible flat cable (FFC) and housed in a 

sturdy aluminum box. The DFE board is essential for recording and 
examining specific data about photon interaction. To measure the time 
pick-off of the event, the Leading Edge Discrimination (LED) algorithm 
was employed, and to determine the exact arrival time of annihilation 
photons, Time to digital converters (TDCs) was used [1,43,47].

This scanner obtains three-dimensional (3D) information in the 
coincidence list mode format (LMF), which includes the energy, timing, 
and spatial coordinates of incident photons within each detector block. 
After that, the detector block sends the data packet for every event to a 
Digital Coincidence Processing Unit (DCPU). The DCPU board separates 
random and prompt coincidences before sending them to the acquisition 
computer for additional processing and calibration. True events are 
histogrammed into 3D sinograms after applying positioning and energy 
corrections using pre-calculated look up tables (LUTs). Two-dimensional 
(2D) sinograms (256 × 256 × 47) were generated with the SSRB and 
Fourier rebinning (FORE) algorithms before reconstruction by software 
available to end users. For reconstructing 2D sinograms, an in-house 
reconstruction package is offered that includes the ordered subsets 
expectation maximization (OSEM) and filtered back projection (FBP) 
algorithms. A 128 × 128 × 47 or 256 × 256 × 47 matrix size is typically 
used to reconstruct images. The limited axial field-of-view in mice and 
rats necessitates the use of two-bed positions and three-bed positions for 
the acquisition of whole body images [43].

2.2. Experimental data sets

2.2.1. Physical phantom
The NEMA NU-4 standards describe the image quality (IQ) phantom 

as a polymethyl-methacrylate cylinder with a diameter of 30 mm and a 
length of 50 mm. The phantom used to measure image quality metrics is 
composed of three distinct sections: two cold chambers filled with water 
and air, five replaceable rods with diameters ranging from 1 to 5 mm, 
and a homogeneous area for evaluating uniformity [43]. In this 
research, the IQ phantom was scanned via Xtrim PET three times for 20 
min and was filled with 18F-FDG with an average activity of 3.7 MBq. 
Two of them were used for training, and the last one was used for the test 
dataset. The total phantom dataset included 180 raw 2D sinograms prior 
to data augmentation. Only the normalization process was performed on 
the obtained sinograms and reconstructed via the OSEM algorithm with 
4 iterations and 4 subsets. The final images were 256 × 256 × 47 volume 
matrices and 0.78 × 0.78 × 1.05 mm3 voxels with axial and transaxial 
fields of view set at 50.3 mm and 100 mm, respectively.

2.2.2. Small animals
In this study, the scan data of 20 mice (30 ± 10 g) were collected 

using small animal Xtrim PET. These mice were divided into two groups. 
Fifteen mice were chosen for training, and the remaining five mice were 
used for the test dataset. Each mouse was scanned for 10 min in 2-bed 
positions under anesthesia with an average activity of 12.95 ± 1.85 
MBq of 18F-FDG. The 3D projection data were rebinned by the single- 
slice rebinning method (SSRB). The resulting dataset contained 2000 
raw 2D sinograms before the data augmentation step. The sinograms 
were corrected only for normalization purpose. The OSEM algorithm 
was used to reconstruct the generated sinogram with 4 iterations and 4 
subsets. The resulting images consisted of 256 × 256 × 47 volume 
matrices with 0.78 × 0.78 × 1.05 mm3 voxels. Axial and transaxial fields 
of view were set at 50.3 mm and 100 mm, respectively.

2.3. Inpainting method

To restore the gap region of the sinogram images, the technique of 
digital inpainting for reconstructing lost/damaged regions was 
employed [48]. Most inpainting methods work as follows: First, the 
image regions to be inpainted are chosen. The algorithm begins at the 
edge of the specified region, utilizing existing image data to complete 
the currently blank areas. This pixel is substituted with the normalized 
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weighted average of all known neighboring pixels. More weight is given 
to the pixels close to the point, the border normal, and pixels on the 
boundary contours [45,49]. In this study, the sinogram’s gap area was 
filled via inpainting method using an algorithm written in the Python 
programming language. Note that this functionality is not currently 
available in the software’s latest version of Xtrim PET scan.

2.4. Data preparation for neural network

A significant obstacle in this research is the need for gap-free sino
grams (accurate reference images) to train the neural network. This 
issue was resolved by generating ground truth data artificially from the 
original sinogram. First, the inpainting method filled the original gaps in 
the sinogram images and modified as the target. The width of the gap 
region in the original sinogram was approximately 3–5 pixels. Then, the 
artificial gaps were applied to the target sinograms with different widths 
(3, 4, and 5 pixels) similar to the original gap pattern, and their values 
became zero. These artificial gaps (referred to as the gap map) were 
added to the inpainted sinograms. These gaps were positioned across 
different locations, though consistently outside the regions previously 
filled by inpainting. The resulting data were used as input for the 
network, as shown in Fig. 1. This approach was developed to train the 
network using the original pixel data from the sinogram, rather than the 
values filled in by the inpainting process for the gaps and regardless of 
their placement. This process enabled the network to restore gap regions 
across the sinogram using reliable results. Moreover, artificial gaps of 15 
pixels in width were added to the target sinograms to evaluate the 
effectiveness of the proposed algorithm for filling more significant gaps.

2.5. Data augmentation (2.2)

Data augmentation was performed during training to prevent the 
network from memorizing data [41]. Two methods were implemented 
to expand the quantity of data within the dataset. In the initial approach, 
the sinogram images were mirrored along the y-axis. In the alternate 
method, the elements of the array were moved horizontally along the x- 

axis, as shown in Fig. 1. Overall, 20 mouse and 3 phantom studies were 
expanded to include 7500 images.

2.6. Summation method

The summation method was introduced using the data obtained from 
the deep learning network while the original data remained unchanged. 
As previously mentioned, the sinogram image of the Xtrim PET scan 
contains gaps due to the space between the detector blocks. In this 
approach, the proposed network predicted the filled sinogram. Next, the 
filled regions were extracted and incorporated into the original sino
gram. With this method, only the gap regions of the sinogram were filled 
with the proposed neural network, while the original data remained 
unchanged. This process was denoted as “Summation1″. Furthermore, 
this technique was applied to sinograms with more significant artifi
cially added gaps, and this process was denoted as ”Summation2.“.

2.7. Deep network architecture

The image-to-image translation cGAN called pix2pix was imple
mented through the Keras and TensorFlow libraries using an NVIDIA 
GTX 1070Ti GPU. The cGAN is a variant of the GAN that uses labeled 
data for context, which helps the generator generate more accurate and 
focused output. Fig. 2 schematically demonstrates the proposed pix2pix 
cGAN model, which consists of two convolution networks: the generator 
and discriminator. The generator’s ’U-Net’ architecture includes an 
encoder and a decoder and connects them through a “skip connection”. 
The skip connection allows for more stable learning than a straightfor
ward encoder–decoder architecture. The encoder decreases the 
component of the input image by downsampling the feature map, and 
the decoder expands the component to generate a gap-free image by 
upsampling the extracted features. The generated images from the 
generator are then fed into a discriminator. The discriminator distin
guishes a real image from the image created by the generator. The 
discriminator utilizes a convolutional PatchGAN classifier, which clas
sifies images using patches of a specific size rather than the entire area. 

Fig. 1. The resultant gap patterns with different pixel widths, examples of inpainted sinogram, data augmentation from original sinogram, and artificial gaps added 
to inpainted sinogram.
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For both the generator and the discriminator, an Adam optimizer was 
applied with a nondecaying learning rate of 2e-4 and a beta of − 1 to 0.5; 
moreover, the number of epochs was set to 30.

The trained cGAN model consists of two loss functions: the cGAN loss 
and the L1 loss. The cGAN loss functions when the discriminator tries to 
recognize the sinogram gap filled by the generator. The L1-Loss esti
mates the mean absolute error (MAE) between the generated gap-free 
sinogram and the ground truth image. The generator (G) was trained 
to convert the gapped sinogram (x) to a gapless sinogram (y) that is close 
to real samples. Furthermore, the discriminator (D) was trained to 
reduce the misclassification error of the gap-free sinogram and the gap- 
free image generated through the generator. This adversarial training is 
expressed as follows: 

LGAN(G,D) = Ex,yp(x,y)[logD(x, y) ] +Exp(x)[logD(x,G(x) ) ] (1) 

In Eq. (1), Ex,yp(x,y) represents the expected value when the gapped 
sinogram (x) and gap-free sinogram (y) are sampled in the probability 
distribution p(x, y). Ex,yp(x,y)[logD(x, y) ] is the maximum where D(x, y) =
1 because the discriminator (D) has an output between 0 and 1. The 
expected value of the gapped sinogram (x) for sampling from the 
probability distribution p(x) is denoted by Exp(x). Exp(x)[logD(x,G(x) ) ] is 
maximized where D(x,G(y) ) = 0 and is minimized where G is success
fully deferred to D. As a result, LGAN(G,D) is maximized through the 
discriminator and is minimized through the generator.

L1-loss (LL1 ) in Eq. (2) is the MAE between the estimated output and 
the ground truth image. 

LL1 (G) = Ex,yp(x,y)
[
||F − G(x) ‖1

]
(2) 

Combining two loss functions into one loss function effectively im
proves the quality of images produced by setting α to 100, an adjustable 
parameter, as expressed by Eq. (3) [36]. 

L = LGAN + αLL1 (3) 

2.8. Analysis

The overall performance of the DL-based methods and image quality 

of the reconstructed images were quantitatively assessed by various 
quality metrics, including the root mean squared error (RMSE), struc
tural similarity index (SSIM) [50], peak signal-to-noise ratio (PSNR), 
contrast-to-noise ratio (CNR) and signal-to-noise ratio (SNR). All images 
are displayed using the same scale.

The RMSE is the root mean square difference without dimension 
between the true values (xi) and predicted values (yi) for comparing the 
prediction errors (N is the pixel index of the input image). It is defined as 
follows: 

RMSE(x, y) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
N
∑N

i=1
(xi − yi)

2

√

(4) 

The SSIM is a perceptual metric for measuring image quality 
degradation caused by processing, such as loss in data transmission or 
data compression. It is based on the image’s luminance, contrast, and 
structure calculated by Eq. (5) [51]. 

SSIM(x, y) =

(
2μxμy + c1

)(
2σxy+c2

)

(
μ2

x + μ2
y + c1

)(
σ2

x + σ2
y + c2

) (5) 

where μx(σ2
x) and μy(σ2

y) are the means (variance) of the input image x 
(estimates) and y (ground truth), respectively. Here, σxy is the covari
ance of x and y, the variables c1 = (K1L)2 and c2 = (K2L)2 are the de
nominator stabilizers, L is the dynamic range of the input pixel values, 
and K1 and K2 are set to 0.01 and 0.03 by default, respectively.

The PSNR is the ratio between the maximum possible signal power 
and the distorting noise power defined by Eq. (6). ymax is the maximum 
value of the original image. MSE(x,y) is the mean square error of two 
input images (MSE(x, y) = 1

N
∑N

i=1(xi − yi)
2, where N in the pixel number 

of the input image). 

PSNR(x, y) = 20log10

(
ymax
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
MSE(x, y)

√

)

(6) 

The CNR can be computed by Eq. (7). Lmean, Bmean and STDB refer to 
the mean count in the lesion region of interest (ROI), the background 

Fig. 2. Schematic illustration of the Pix2pix cGAN used in this study.
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ROI, and the noise component as the standard deviation of the count 
within the background ROI, respectively [52]. 

CNR =
Lmean − Bmean

STDB
(7) 

Another widely accepted metric, the SNR, can be calculated by Eq. 
(8). It is denoted as the ratio of the mean value (Lmean) to the standard 
deviation (STDB) in the ROI in the lesion and background of the 
reconstructed image [53,54]. The ROIs corresponding to the targets 
were drawn as spherical shapes for CNR and SNR, and the same ROIs 
were placed inside the background medium. Four times, in different 
parts of the background, the ROIs were drawn, and the average of SNR 
and CNR were calculated. 

SNR =
Lmean

STDB
(8) 

The SNR and CNR differences between each method of gap filling 
(Pix2Pix, Summation1, Inpainted, Extra Gap and Summation2) and 
original data were estimated using paired T-test statistical method. In 
this approach, a P-value of less than 0.05 was considered statistically 
significant.

3. Results

Fig. 3 shows a plot of the proposed neural network’s training loss and 
MAE for different numbers of epochs. These two curves generally tended 
to converge after 25 epochs, which indicates an increase in the net
work’s ability to better represent its features. The Pix2Pix cGAN method 
achieved an RMSE of 9.34 × 10− 4 ± 5.7 × 10− 5 and an SSIM of 99.984 
× 10− 2 ± 1.8 × 10− 5 when comparing the generated and ground truth 
images across all test slices.

Fig. 4 shows six variations of an axial slice of the mouse sinogram. 
The initial row pertains to the sinogram produced from the raw data of 
the Xtrim PET scan, the gap in the sinogram filled using pix2pix cGAN, 
the summation1 method, and the inpainted method, along with the in
clusion of an artificial extra gap filled with generated pix2pix cGAN data 
(summation2). Deep learning and inpainted approaches could effec
tively compensate for the missing data. Furthermore, the Pix2Pix arti
ficial neural network can generate a more precise and reliable filled gap. 
Fig. 4′s second row shows the improvement in image quality due to gap 
filling when using the OSEM algorithm with 4 iterations and 4 subsets. 
The deep learning-based method provides better image quality than the 
other methods. However, the large gaps cause significant degradation in 
the reconstructed image. The third row contains the residual image, 
equal to the difference between the gap-filling images and the original 

image. The main difference between all the gap-filling images and the 
original image was the star-shaped artifact that was augmented with 
more gaps.

Fig. 5 shows the reconstructed images of the IQ phantom (two parts 
of chamber and uniform regions) via six methods. The difference be
tween each reconstructed image and the corresponding original image 
was evaluated, and the results are shown in the row below. There is a 
noticeable star artifact and the most significant difference is associated 
with the additional gap. The original shape is significantly distorted as a 
result of his alteration, losing its intended clarity and design. The images 
produced using the Inpainted method display lower contrast and blur
ring around the edges of the shapes. Additionally, this method cannot 
eliminate the star artifact and demonstrates lower quantitative mea
surements compared to the Pix2Pix method. The Pix2Pix method could 
eliminate the star artifact compared to other methods with higher 
contrast and quantitative measurements.

In Fig. 6, six different types of reconstructed samples are shown. 
These include the original sinogram (first column), the test dataset of the 
Pix2Pix cGAN (second column), the summation1 (third column), the 
inpainted method (fourth column), the application of an extra gap (fifth 
column), and the summation2 (sixth column). The OSEM reconstruction 
method (4:4) was applied.

After evaluating six methods, the deep learning-based approach 
outperformed others by producing more desirable quality and detailed 
images. The remaining images closely resemble those generated by the 
deep learning method, as they show minimal variability in appearance. 
This is due to the low percentage of gap areas and the use of the 
reconstruction method. However, as the gap area increases, the differ
ences between the reconstructed images become more noticeable. The 
following explanation explains the distinction between the images more 
clearly through quantitative measurements.

The quantitative results of the quality assessment indices, including 
the PSNR, RMSE, and SSIM, were reported for six methods compared to 
the original image. The PSNR, a metric for evaluating the quality of 
Pix2Pix and summation2, ranged from 29 to 36 dB, with a standard 
deviation of less than 0.001. However, this value was notably lower for 
the additional gap, particularly for image (a) at approximately 18.90 dB. 
The quality of the predicted images improves as the PSNR increases. The 
RMSE values were close to zero for pix2pix, summation1, and summa
tion2 but increased to 0.27 for extra gaps. The RMSE exhibited a sig
nificant difference of approximately 45 % to 50 % between the inpainted 
and pix2pix values for images (a) and (e). The SSIM similarity metrics 
for the generated images were consistently above 0.92 across all data
sets, with a standard deviation of less than 0.001, except for the extra 
gap images (a) and (c), which were below 0.90. Pix2pix and summation2 

Fig. 3. The MAEs (a) and loss values (b) versus the number of epochs of the pix2pix cGAN from the training dataset.

Z. Karimi et al.                                                                                                                                                                                                                                  Physica Medica 133 (2025) 104971 

5 



outperformed the other methods in terms of image quality.
Additionally, Fig. 7 shows the image intensity profile extracted from 

the cross-sectional plane of the six test samples. The profile lines 
generated from the original, pix2pix, and summation2 methods had the 
most consistency with the slightest variation among all the samples, 

confirming the neural network’s accuracy and effectiveness. However, 
the results of the extra gap, inpainted, and summation1 methods were 
inconsistent with those of the other three methods across all samples.

The performance of the SNR and CNR were reported in Table 1 via P- 
value. The T-test P-values reported for the six test sample images shown 

Fig. 4. A selective slice sinogram of a mouse with different gap-filling techniques and their reconstructed images with residual images between the original images. 
All the pictures are displayed with the same scale.

Fig. 5. Two selective slices of reconstructed images of an IQ phantom, using different gap-filling techniques and their corresponding residual images, are presented 
alongside the original images. All the pictures are displayed at the same scale.
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in Fig. 6 related to each method in comparison via original data. The 
results show that Pix2pix outperforms the other sampled images and 
approximately were statistically significant. The SNR and CNR for 
Summation1, Summation2, and Inpainted methods were not statistically 
significant. The Extra Gap method showed lower values compared to 
Pix2Pix, as evidenced by the images with a dominant star artifact.

4. Discussion

When there is a gap between adjacent detector blocks in a PET 
scanner, multiple areas in the detection field where data cannot be 
accurately captured are created. This can result in data loss and lower 
image quality in reconstruction processes.

This study introduces a DL-based method to address the issue of 

missing data caused by inter-detector gaps in the Xtrim PET scans. A 
considerable challenge in this study is the absence of ground truth data, 
which were artificially produced by the original sinogram. The inpain
ted method was used to fill the gap area in the original sinogram. Then, 
artificial gaps similar to the original pattern were created and located at 
different places except the inpainted area in the original sinogram. This 
method was implemented to help pix2pix learn the pattern of the gap 
map from the original data, focusing the network on the original sino
gram data rather than the inpainted areas. While the inpainted area 
could contribute to training the proposed network, its contribution 
percentage is relatively low compared to the overall dataset, and it does 
not exist in the learning algorithm for filling the gaps in the network. 
Our findings indicate that pix2pix cGAN has the ability to learn to 
generate new data from a specific pattern and can potentially rectify 

Fig. 6. Six test samples were reconstructed using the OSEM method from left to right: original data, Pix2Pix data, summation1, inpainted method, applying an extra 
gap, and summation2.
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Fig. 7. A comparison of the profile lines of the six test samples were shown in Fig. 6.

Table 1 
The CNRs and SNRs with P-value (each method via original data) for the six test sample images were shown in Fig. 6.

Original Pix2Pix P-value Summation1 P-value Inpainted P-value Extra Gap P-value Summation2 P-value

a CNR 8.33 11.05 0.003 8.28 0.09 7.35 0.12 3.53 6E-04 10.02 0.017
SNR 13.22 15.39 0.047 13.51 0.74 14.53 0.22 8.93 0.018 14.74 0.07

b CNR 5.95 6.57 0.31 6.01 0.86 6.04 0.82 3.94 0.003 6.28 0.32
SNR 12.30 14.15 0.001 12.65 0.601 13.27 0.37 8.57 0.003 13.45 0.048

c CNR 12.04 12.20 0.83 11.94 0.88 11.35 0.51 8.83 0.005 11.70 0.75
SNR 16.66 18.38 0.018 17.01 0.45 17.16 0.55 12.32 0.018 17.54 0.43

d CNR 7.23 8.69 0.30 9.27 0.09 6.61 0.61 2.46 0.009 8.21 0.38
SNR 13.24 15.48 0.08 14.69 0.19 12.95 0.83 5.54 2E-04 14.70 0.22

e CNR 3.27 3.98 0.06 2.99 0.46 2.89 0.44 2.03 0.03 3.13 0.57
SNR 10.10 11.22 0.009 10.49 0.07 11.59 0.29 7.32 0.012 10.64 0.024

f CNR 4.14 6.85 0.018 3.83 0.57 2.73 0.077 2.51 0.02 5.19 0.12
SNR 9.07 12.34 0.005 9.41 0.72 7.37 0.036 8.79 0.007 10.08 0.41
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missing data in sinograms by acquiring knowledge of the data distri
bution and generating visually realistic approximated sinograms. In 
addition, the proposed DL-based network can substantially diminish 
noise and improve image quality with fewer artifacts [35].

The inpainting technique is used to restore missing areas of an image 
by utilizing data from surrounding pixels. However, this method typi
cally concentrates on a local area to estimate the regions that need 
correction. This focus can lead to inconsistencies in the data, especially 
when dealing with larger gaps [5,10]. In this study, the sinograms had 
small gap areas, and the inpainted method’s destructive effects were not 
clearly observed.

The reason for the slightly lower results of Summation1 compared to 
Pix2Pix was the worsening of the data inconsistency of the original data 
and Pix2Pix. In addition, the inpainted and extra gap methods decreased 
the image quality; nevertheless, the pix2pix method could generate a 
free gap sinogram and enhance the image quality.

Additionally, the quantitative results obtained in the picture of mice 
and IQ phantom were illustrate that the most suitable method for filling 
this gap is based on the DL-based approach. The reconstructed images of 
the IQ phantom were illustrated that the Pix2Pix method could generate 
the uniformly image without significant star artifact, good edge main
tenance and noise suppression characteristics compared to other 
methods. The investigation of this proposed method on rat projections 
will also be considered for further complementary studies.

The significant artificial gaps were added to the original sinogram 
and filled with deep learning results to demonstrate the DL-based 
approach’s feasibility better.

The OSEM reconstruction method was applied in this investigation. 
Although the FBP reconstruction method is advised by NEMA NU 4- 
2008, it introduces errors and artifacts that reduce spatial resolution. 
Additionally, systems with missing data or irregularly designed geom
etries cannot be subjected to the FBP method. Recently, iterative 
reconstruction techniques have become increasingly popular due to 
their ability to accurately model Poisson noise and the system response 
for PET image reconstruction [55].

Our findings have shown that the DL-based approach can generate 
high-quality and precise PET images on scanners. It is worth noting that 
the proposed method is very promising for different scanners with 
different configurations and for developing new PET scanner designs 
based on partial rings. Moving forward, we intend to further explore the 
capabilities and benefits of DL-based gap correction by comparing our 
results with those obtained from alternative methods.

5. Conclusion

Finally, we demonstrated and evaluated the proposed neural 
network, which learns a mapping from the entire sinogram in compar
ison to nearby pixels and provides a workable solution for restoring 
missing data in a sinogram. Comparing the reconstructed image to other 
introduced techniques, this approach also improved qualitative and 
quantitative outcomes.
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