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of advanced stage or patient comorbidity, highlighting the 
customized approach required for the best possible lung 
cancer care [3]. The 5-year survival rate for early-stage 
NSCLC is approximately 30– 60% [4]. Lymphovascular 
invasion (LVI), defined by the presence of malignant tumor 
cells within endothelium-lined spaces of lymph or blood 
vessels, is the major prerequisite for tumor progression and 
distant metastasis development [5]. LVI is considered an 
independent negative prognostic indicator for loco-regional 

Introduction

Lung cancer has the highest death rate of any cancer glob-
ally, and Non-Small Cell Lung Cancer (NSCLC) constitutes 
about 80–85% of all lung cancer cases [1]. Radical surgi-
cal resection is frequently the chosen treatment option for 
early-stage NSCLC [2]. However, systemic medicines like 
chemotherapy or immunotherapy are frequently advised in 
cases where NSCLCs are considered unresectable because 
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The current study aimed to predict lymphovascular invasion (LVI) using multiple machine learning algorithms and multi-
segmentation positron emission tomography (PET) radiomics in non-small cell lung cancer (NSCLC) patients, offering 
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Multilayer Perceptron (MLP), Logistic Regression (LR), XGBoost (XGB), Naive Bayes (NB), and Random Forest (RF), 
were employed. Synthetic Minority Oversampling Technique (SMOTE) was also used to determine if it boosts the area 
under the ROC curve (AUC), accuracy (ACC), sensitivity (SEN), and specificity (SPE). Our results indicated that the 
combination of SMOTE, IT (with 45% threshold), RFE feature selection and LR classifier showed the best performance 
(AUC = 0.93, ACC = 0.84, SEN = 0.85, SPE = 0.84) followed by SMOTE, FCM segmentation, MRMR feature selection, 
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(with 45 and 50% thresholds) alongside Boruta feature selection and the NB classifier without SMOTE (ACC = 0.9, 
AUC = 0.78 and 0.76, SEN = 0.7, and SPE = 0.94, respectively). Our results indicate that selection of appropriate segmen-
tation method and machine learning algorithm may be helpful in successful prediction of LVI in patients with NSCLC 
with high accuracy using PET radiomics analysis.
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recurrence, poor disease-free, or overall survival outcomes 
in NSCLC patients [6]. Preoperative neoadjuvant chemo-
therapy and lobectomy with expanded lymph node dissec-
tion have been shown to be effective treatment strategies for 
NSCLC patients harboring LVI [7]. Therefore, early detec-
tion of LVI in NSCLC patients is essential for prognosti-
cation and the selection of appropriate treatment options. 
Histologic classification has remained the gold standard for 
identifying lymphovascular invasion (LVI), a critical factor 
that significantly influences prognosis and treatment strate-
gies in lung cancer. Despite its invasiveness, this method is 
crucial for accurate staging and guiding therapeutic inter-
ventions, underscoring the need for precise and less inva-
sive diagnostic alternatives [8].

Preoperative identification of LVI in NSCLC patients 
is challenging due to the absence of reliable biomarkers or 
diagnostic tools in the clinical setting [9]. Although [18F]-
2-Fluoro-2-deoxy-D-glucose ([18F]-FDG)-positron emis-
sion tomography (PET) is commonly used for the diagnosis 
of NSCLCs, routine FDG-PET images cannot detect small 
vascular invasions owing to spatial resolution limitations. 
The application of advanced radiomics techniques can sig-
nificantly enhance the detection capabilities. Radiomics, a 
quantitative analysis of phenotypic characteristics of lesions 
and intratumoral heterogeneity through in-depth mining of 
imaging data, can be used to predict outcomes, diagnose, 
and prognose abnormalities, including lung cancers [10–
13]. PET radiomics and CT texture analyses have been used 
to predict LVI in lung adenocarcinomas [14] and NSCLCs 
[15]. In addition, machine learning classifiers of PET 
radiomics have been used to diagnose histological subtypes 
of lung cancers [16], brain tumors [17], esophageal cancers 
[18], and gastric cancer [19] with high accuracy.

However, various factors can affect the accuracy of pre-
dictions, [20–22], especially image segmentation meth-
ods [23]. A recent phantom study examined the impact of 
manual contouring variability on PET radiomic features 
and revealed the susceptibility of radiomic features to dif-
ferent segmentations [24]. In addition, Lu et al. studied the 
effects of segmentation and discretization on PET radiomic 
features, highlighting that only half of the features were 
robust against various segmentation methods [25]. There-
fore, any slight modification in the quantitative analysis 
may alter the prediction accuracy. In contrast, other stud-
ies have demonstrated the potential of machine learning 
and radiomic features in predicting LVI and lymph node 
metastasis of different types of cancer, including lung can-
cer, gastric cancer, and cervical cancer. Li et al. [26] used 
a combination of a machine learning model of radiomic 
features, Cox-2, and Tenascin C expression to predict LVI 
in PET/CT radiomics with high accuracy. The highest per-
formance of the area under the curve (AUC) reported in 

this study was greater than 0.91, suggesting the potential 
of machine learning in predicting LVI in PET radiomics. 
In a recent study, lymph node metastasis of gastric cancer 
was predicted using machine learning models, resulting 
in more than 0.95 accuracy [27]. In another study, Hua et 
al. [28] explored a technique for deep feature learning and 
multiparametric MRI-based radiomics for preoperative LVI 
prediction in early-stage cervical cancer. Both tumor and 
peritumor tissues had their radiomic features retrieved, and a 
deep learning model was developed using information from 
a training cohort of 111 patients. The AUCs achieved by the 
final model, which combined five radiomics and three deep 
learning features, were 0.77 for the validation cohort. The 
work highlights the opportunity for enhanced LVI predic-
tion in early-stage cervical cancer using a combination of 
radiomics and deep learning methods.

Despite LVI being a recognized independent adverse 
prognostic factor, its detection is not typically incorporated 
into routine clinical practice. Furthermore, the current lit-
erature lacks sufficient focus on leveraging PET radiomic 
features and machine learning methodologies for predicting 
LVI. This conspicuous gap, which intertwines clinical prac-
tice and research, underscores the critical need for additional 
investigation in this domain to enhance prognostic accuracy 
and, ultimately, patient outcomes. In this study, a range of 
segmentation techniques were applied to FDG-PET images 
to identify the optimal segmentation method. Furthermore, 
diverse feature selection techniques and machine learning 
algorithms were employed to detect LVI in NSCLC patients, 
utilizing PET radiomic features extracted from regions of 
interest.

Materials and methods

The methodology adopted in the current study involved a 
radiomics framework, as depicted in Fig. 1.

The first step was data acquisition, which involved obtain-
ing FDG-PET images of NSCLC patients. Various image 
segmentation techniques were then applied to PET images 
to determine the best segmentation method. Next, regions 
of interest (ROIs) were defined based on the segmentations, 
and PET radiomic features extracted from the defined ROIs. 
Feature selection methods were applied to reduce the dimen-
sionality of the data and select the most relevant features for 
predicting LVI. Multiple machine learning classifiers, such 
as logistic regression, support vector machines, and random 
forests, were then trained on the selected features and evalu-
ated using cross-validation. The performance of the classifi-
ers was assessed using metrics such as accuracy, sensitivity, 
specificity, and area under the receiver operating character-
istic curve (AUC-ROC). Finally, the results were analyzed, 
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and the most accurate classifier was selected for predicting 
LVI in NSCLC patients using PET radiomics features.

Patient population and PET imaging

This retrospective study was approved by the Institutional 
Review Board (IRB) of Tehran University of Medical Sci-
ences (approval ID IR.TUMS.MEDICINE.REC.1397.733). 
Due to the retrospective nature of the study, the require-
ment for obtaining written informed consent from patients 
was waived by the IRB. A cohort of 126 treatment-naive 
patients, consisting of 76 (60.4%) males and 50 (39.6%) 
females with a mean age of 47 ± 12 years were recruited. All 
patients had a biopsy-confirmed diagnosis of non-small cell 
lung cancer (NSCLC), with 36 (28.6%) patients showing 
LVI involvement and 90 (71.4%) patients showing no evi-
dence of LVI involvement on histopathology. All patients in 
this cohort underwent a uniform treatment protocol. Each 
individual in the study, comprising both male and female 
patients, received the same initial treatment approach. This 
uniformity involved surgery as the first line of treatment, 
followed by a standardized post-operative care protocol, 
ensuring that the impact of different treatment modalities on 
LVI was minimized.

All patients included in this study underwent 18F-Fluo-
rodeoxyglucose positron emission tomography/computed 
tomography (18F-FDG-PET/CT) imaging as part of their 

standard of care treatment, following a standard protocol. 
Prior to 18F-FDG-PET imaging, patients were required to 
fast for at least 6 h, and their plasma glucose concentrations 
were monitored to ensure they remained below 200 mg/dl. 
PET imaging was performed 50 to 70 min after the intrave-
nous injection of 18F-FDG. PET/CT imaging was conducted 
on a 40-slice Biograph hybrid PET/CT scanner (Siemens 
Healthineers, Erlangen, Germany). Low-dose CT imaging 
was used for attenuation correction and anatomical localiza-
tion. PET data were reconstructed utilizing the ordered sub-
set-expectation maximization (OSEM) iterative algorithm, 
employing 3 iterations and 18 subsets. This process resulted 
in an image matrix of 256 × 256, with each pixel covering an 
area of 3.906 mm². A Gaussian post-reconstruction smooth-
ing filter with a full width at half maximum (FWHM) of 
4.5 mm was applied. All images were generated using the 
same reconstruction algorithm to minimize the impact of 
pre- and post-processing on the validity of imaging data. 
Furthermore, it’s essential to note that all patients had their 
FDG PET/CT scans performed within a closely monitored 
time frame before surgical procedures. The time interval 
between these scans and the surgery was consistent across 
the cohort, thereby reducing the variability that might affect 
the predictive accuracy of radiomics in assessing LVI. This 
consistency in both treatment and diagnostic timing pro-
vides a more controlled and reliable context for evaluating 

Fig. 1 The framework adopted in the current study encompasses various steps from data acquisition to the evaluation of multiple machine learning 
classifiers
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precisely [36]. FCM Implements soft clustering to assign 
each pixel a membership value for LVI, enabling smoother 
transitions between segmented areas [37]. KM utilizes hard 
clustering to partition image pixels into K clusters, often 
producing sharp-edged segmentation of LVI regions [38]. 
Watershed applies topological techniques to identify “catch-
ment basins” and “watershed ridge lines” in the image, 
helping to segment intricate structures associated with LVI 
[39]. RG as semi-automated approach, starts from manu-
ally selected seed points and expands outward, aggregating 
pixels that meet specific criteria, effectively isolating areas 
indicative of LVI [40]. IT applies an iterative process to seg-
ment the image using different intensity levels, optimized 
for various threshold percentages (30%, 35%, 40%, 45%, 
50%, 60%, 70%, 80%) to capture varying degrees of LVI 
visibility [41].

the impact of various factors on the presence and extent of 
LVI in non-small cell lung cancer patients.

PET image segmentation methods

Various segmentation methods can be used in PET radiomic 
studies [29]. In our study, we implemented different PET 
image segmentation methods, including semi-automated 
and fully automated techniques that have been utilized 
more frequently, specifically for LVI in NCSCL. The seg-
mentation methods used in this study were the Local Active 
Contour (LAC) [30], Fuzzy-C-mean (FCM) [31], K-means 
(KM) [32], Watershed [33], Region Growing (RG) [34], 
and Iterative Threshold (IT) [35], with different threshold 
percentage (30, 35, 40, 45, 50, 60, 70, and 80%). Using an 
in-house developed algorithm based on MATLAB 2022a 
software (Fig. 2), images were converted to ROIs for each 
of the 13 segmentation methods.

LAC Utilizes evolving contours within localized regions 
to capture the boundaries of lymphovascular invasion 

Fig. 2 Multiple segmentation 
methods were applied to PET 
images, including Local active 
contour (LAC), Fuzzy-C-mean 
(FCM), K-means (KM), Region 
growing (RG), and Iterative 
thresholding (IT) with different 
percentages of the threshold. The 
central slice is shown in the first 
image on the left, the second one 
is the anterior view, the third one 
is the antero-posterior view, and 
the fourth superior-inferior view 
of one representative clinical 
study. The smooth appearance 
of the segmented volumes in 
this figure is a result of display 
smoothing applied for visualiza-
tion purposes and does not reflect 
the actual voxel resolution
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model complex relationships between radiomic features and 
lymphovascular invasion status. XGBoost is an ensemble 
learning method aiming to optimize a sum of differentiable 
convex loss functions [45]. It can efficiently handle missing 
data and provides good predictive accuracy, making it use-
ful in medical scenarios where some imaging data may be 
incomplete or noisy. LR is a statistical method for binary 
classification modeling the log-odds of the probability of 
the event [46]. It can provide a straightforward and interpre-
table model for predicting the likelihood of lymphovascular 
invasion based on radiomics features. RF is an ensemble 
learning method consisting of a multitude of decision trees, 
outputting the class reflecting the mode of the classes or 
mean prediction of the individual trees [47]. RF can handle 
a large number of features as input and provide an estimate 
of feature importance, which can be valuable for identifying 
key radiomic features related to lymphovascular invasion. 
NB classifiers are a family of probabilistic classifiers based 
on applying Bayes’ theorem with strong independence 
assumptions between the features [48]. NB is computation-
ally efficient and could be used for initial rapid screening 
or in scenarios where computational resources are limited.

Due to the imbalanced nature of the dataset with regard 
to the two labels (LVI-positive and LVI-negative), the Syn-
thetic Minority Oversampling Technique (SMOTE) was 
used to balance and improve prediction sensitivity. SMOTE 
is an oversampling technique that generates new artificial 
samples of the minority group by random oversampling, 
which helps preventing overfitting [49]. All the classifi-
ers and the SMOTE algorithm were implemented using 
the mlr library [50] in R version 4.0.4 (The R Foundation, 
Vienna, Austria). To robustly evaluate the performance of 
each model, we assessed key metrics including accuracy 
(ACC), area under the curve (AUC), specificity (SPE), 
sensitivity (SEN), negative predictive value (NPV), and 
positive predictive value (PPV). These evaluations were 
conducted using a bootstrapping technique with 1000 itera-
tions, allowing us to estimate the stability and reliability of 
these metrics under varying data conditions. Bootstrapping 
involved repeatedly sampling with replacement from the 
original validation set to generate multiple synthetic data-
sets. For each bootstrap sample, performance metrics were 
calculated, thereby accumulating a distribution of outcomes 
for each metric. This distribution was then used to compute 
95% confidence intervals, offering insights into the variabil-
ity and potential bias of the model’s performance estimates. 
The bootstrapping approach not only highlights the robust-
ness of our models against different subsamples of data but 
also mitigates potential overfitting by demonstrating how 
the models might perform in genuinely unseen datasets. 
We did not hold out a subset of the dataset as a common 
test set for each algorithm after optimization because the 

Feature extraction

A total of 105 original radiomic features were extracted from 
each ROI delineated by the various segmentation methods 
explored in this study using the image biomarker standard-
ization initiative (IBSI) [42] compliant Pyradiomics pack-
age [43]. These original radiomic features were derived 
from shape, first-order, second-order texture, and higher-
order statistic features, including 13 shape features, 16 
first-order statistical features, 23 Gy level co-occurrence 
matrix (GLCM) features, 14 Gy level dependence matrix 
(GLDM) features, 16 Gy level size zone matrix (GLSZM) 
features, 16 Gy level run length matrix (GLRLM) features, 
and 5 neighboring gray-tone difference matrix (NGTDM) 
features. From each patient, a total of 1365 imaging features 
(105 features using 13 different segmentation methods) 
were extracted. The details of these radiomic features are 
provided in supplementary Table 1.

Feature selection

Given the high number of radiomic features, it is important 
to reduce the number of features to prevent overfitting. To 
achieve this, multiple feature selection algorithms were uti-
lized, including minimum redundancy maximum relevance 
(mRmR), recursive feature elimination (RFE), and Boruta.

The dataset was carefully divided into mutually exclu-
sive training (70%) and validation (30%) sets before any 
processing to prevent data leakage and ensure that the vali-
dation data remained unseen by the models during train-
ing. We employed a stratified split approach, maintaining 
the proportions of each class in the original dataset within 
both the training and validation sets. This method preserves 
the underlying distribution of the dataset and enhances 
the generalizability of our model. In our study, the mRmR 
feature selection algorithm was employed, resulting in the 
selection of a total of ten features. Unlike mRmR, RFE and 
Boruta feature selection algorithms were not constrained by 
a predetermined number of features. Instead, these method-
ologies dynamically determined the optimal quantity of fea-
tures to be selected based on inherent algorithmic criteria, 
facilitating a more adaptive and potentially robust feature 
selection process.

Classifier

Five machine learning classifiers were used to predict LVI, 
including Multilayer Perceptron (MLP), XGBoost (XGB), 
Logistic Regression (LR), Random Forest (RF), and Naive 
Bayes (NB).

MLP is a type of artificial neural network consisting of 
multiple layers of nodes in a directed graph [44]. It can 
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SMOTE. The ACC of predicting LVI for different machine 
learning classifiers and feature selectors over various seg-
mentation methods applied to PET images is summarized in 
Fig. 4. Additionally, supplemental Figs. 3–5 display the pre-
diction power of AUC, SEN, and SPE, respectively, regard-
ing different feature selection methods and classifiers over 
multiple segmentation methods examined in this study. The 
complete results of ACC, AUC, SEN, SPE, PPV, and NPV 
for each model are provided in Supplementary Table 2.

Overall, the ACC and AUC of LVI predictions reported 
in Supplemental Figs. 1 and 2 are promising, and the pre-
diction power of all feature selections and classifiers is 
high. The SMOTE algorithm does not remarkably impact 
the AUC results. The FCM segmentation with RFE feature 
selection and NB classifier without SMOTE showed the 
highest predictive power of AUC (0.95). However, the LR 
and XBG classifiers had a lower predictive power among 
all classifiers examined in the study (Standard deviation 
(SD): 0.64 and 0.59, respectively). The prediction accuracy 
with all classifiers using Boruta feature selection was con-
siderable, with more than 0.75 accuracy. The impact of the 
SMOTE algorithm on ACC results cannot be ignored, as it 
reduces the ACC, particularly in models with MLP classifier 
and Boruta feature selection (Supplemental Fig. 1A). The 
SMOTE NB classifier with Boruta feature selection had the 
lowest accuracy.

primary focus was on maximizing the use of available data 
to ensure robust performance metrics through extensive 
resampling. The models were created based on one segmen-
tation method, one feature selector, and one machine learn-
ing classifier, both with and without SMOTE, resulting in a 
total of 390 models (13 × 3 × 5 × 2).

Results

Figure 3 illustrates the sensitivity analysis of various fea-
ture selection methods across multiple segmentation tech-
niques and machine learning algorithms used in this study. 
Bar plots A, B, and C correspond to Boruta, MRMR, and 
RFE feature selection methods, respectively. The lower plot 
shows the sensitivity values obtained after applying the 
SMOTE algorithm to balance the dataset, while the upper 
plot displays the original sensitivity values without using 
SMOTE. Our results demonstrate that the NB classifier, 
which uses distinct feature selection methods, exhibited a 
high level of sensitivity for LVI prediction. On the other 
hand, the MLP, RF, and XGB classifiers had the lowest sen-
sitivity and were significantly improved after applying the 
SMOTE algorithm.

Supplemental Figs. 1 and 2 present the ACC and AUC of 
different feature selectors applied to multiple machine learn-
ing algorithms and segmentation methods with and without 

Fig. 3 Sensitivity analysis of Boruta (A), MRMR (B), and RFE (B) 
feature selection over 13 image segmentation methods including LAC, 
FCM, K means, Watershed, RG, and iterative thresholding besides 5 

machine learning classifiers including MLP, LR, XGB, NB, and RF. 
The results obtained with SMOTE (lower plot) and without SMOTE 
(upper plot) are shown
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FCM, K means, Watershed, RG, and iterative thresholding, 
were applied in this study. We aimed to choose the best 
model based on the classifiers and feature selection methods 
besides the segmentation algorithms.

Table 1 sums up the results of the top ten AUC perfor-
mances of the various machine learning classifiers and fea-
ture selection methods implemented in the current study. 
The AUC confidence interval (CI) of the 1000 bootstrapping 
method is reported in this table. Table 2 provides informa-
tion regarding the top ten ACC performances of our mod-
els. Thirteen image segmentation methods, including LAC, 

Table 1 Top ten areas under the ROC curve (AUC) performances of our models for lymphovascular invasion prediction. The AUC confidence 
interval (CI) of 1000 bootstraps goes along with multiple feature selection (FS) methods, various segmentation (Seg) methods, and machine learn-
ing (ML) classifiers in the current study
Type Seg ML FS AUC ACC SEN SPE AUC CI
Original FCM NB RFE 0.95 0.67 1 0.61 0.95–0.96
SMOTE IT 45% LR RFE 0.93 0.84 0.85 0.84 0.92–0.93
SMOTE FCM LR MRMR 0.92 0.87 1 0.84 0.92–0.92
Original FCM NB MRMR 0.91 0.22 1 0.064 0.9–0.91
SMOTE IT 50% LR MRMR 0.91 0.79 0.84 0.78 0.9–0.91
Original Kmeans NB RFE 0.89 0.38 1 0.26 0.89–0.9
SMOTE IT 45% MLP MRMR 0.89 0.7 0.84 0.67 0.88–0.89
SMOTE IT 45% MLP RFE 0.89 0.73 0.83 0.71 0.89–0.9
SMOTE IT 50% NB MRMR 0.88 0.43 1 0.32 0.88–0.89
SMOTE IT 50% NB RFE 0.88 0.7 0.83 0.68 0.88–0.88

Fig. 4 Accuracy (ACC) heatmap 
of multiple machine learning 
algorithms and feature selections 
over 13 image segmentations 
methods, including LAC, FCM, 
K means, Watershed, RG, and 
iterative thresholding besides 
5 machine learning classifiers 
including MLP, LR, XGB, NB, 
and RF
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of PET radiomics and a unique protein production. The 
strongest model for predicting LVI was a radiomics model 
with an AUC of 0.91, higher than the combined model 
(AUC = 0.80), demonstrating the remarkable ability of the 
machine learning model of PET radiomic features to predict 
LVI. Long et al. [60] investigated the potential of conven-
tional MRI-based radiomics for predicting LVI in patients 
with endometrial cancer. The study’s results demonstrated 
a high level of predictive performance, yielding an AUC 
of 0.93 and an accuracy of 0.94. These remarkable metrics 
were derived from a comprehensive dataset comprised of 
184 female patients. Zhou et al. [61] aimed to predict the 
lymph node metastasis of gastric cancer. They used seven 
machine learning algorithms on data from more than 1,000 
patients and found that the Gradient Boosting Decision 
Trees classifier showed the highest accuracy, approximately 
0.95. In our results, the NB classifier with Boruta feature 
selection and IT segmentation with a 45% threshold showed 
the highest accuracy (ACC = 0.90). Singh et al. [62], in a 
machine learning approach for detecting and classifying 
lung cancer, reported that the MLP classifier had the high-
est performance, achieving an ACC of 0.88. Hu et al. [63] 
predicted lymph node metastasis of NSCLC. Their study 
showed that the RF classifier had the highest AUC (0.83). 
The occurrence of imbalanced datasets represents a preva-
lent and significant hurdle in medical research, often pos-
ing complex challenges to the validity and generalizability 
of study outcomes. Collecting a fully balanced dataset may 
only sometimes be feasible in clinical practice. An oversam-
pling algorithm, such as SMOTE, can be used to improve 
the prediction sensitivity.

In this study, we used the SMOTE algorithm to address 
the imbalance issue in our dataset. However, we found that 
the SMOTE algorithm had a negative impact on the accu-
racy and AUC results, especially in the case of the MLP clas-
sifier with Boruta feature selection. In Fig. 3, we illustrate 
the immediate effect of the SMOTE algorithm on sensitiv-
ity. We observed that the sensitivity of the original (without 

Discussion

Early lung cancer detection remains challenging. Despite 
improvements in data acquisition methods [51], recon-
struction algorithms [52], and analysis techniques, LVI is a 
known risk factor for poor prognosis and a recommendation 
for subsequent radiotherapy in many types of cancer [53]. 
Following NSCLC resection, LVI has been shown to inde-
pendently predict early recurrence [7]. For certain gyne-
cologic, head, and neck epithelial malignancies, adjuvant 
therapy may be considered even in node-negative illnesses 
when LVI is present [54].

Higashi et al. [55] used [18F]-FDG uptake as a predictor 
for LVI. They reported significant correlation with intertu-
moral lymphatic vessel invasion and lymph node metasta-
sis. Our approach offers a more detailed analysis through 
image segmentation and feature extraction, leading to 
potentially higher predictive accuracy. Similarly, Li et al. 
[56] focused on volumetric metabolic parameters from pre-
operative [18F]-FDG PET/CT to predict primary tumor LVI, 
revealing metabolic tumor volume as an independent pre-
dictor. Our method integrates a broader range of radiomic 
features, aiming for a comprehensive evaluation. Wang et 
al.‘s study [57] on PET/CT radiomics for LVI prediction 
showed an AUC of 0.773, indicating the effectiveness of 
radiomics analysis. However, our approach aimed to refine 
prediction models further through advanced machine learn-
ing algorithms.

Hyun et al. [58] predicted the histological subtype of lung 
cancer with a machine learning approach, reporting that the 
LR model had the highest predictive power with an AUC 
of 0.85. In our study, the NB classifier with RFE feature 
selection and FCM segmentation showed the highest pre-
dictive power with an AUC of 0.95. A recent study involved 
a retrospective analysis of 112 patients who underwent 
PET/CT scans for early-stage cervical squamous cell cancer 
[59]. On the basis of PET/CT scans, 401 radiomic features 
were retrieved, and LVI was predicted using a combination 

Table 2 Top ten accuracy (ACC) performances of our models for lymphovascular invasion prediction. The ACC confidence interval (CI) of 1000 
bootstraps going along with multiple feature selection (FS) methods, various segmentation (Seg) methods, and machine learning (ML) classifiers 
in the current study
Type Seg ML FS ACC AUC SEN SPE ACC CI
Original IT 45% NB Boruta 0.9 0.78 0.7 0.94 0.89–0.9
Original IT 50% NB Boruta 0.9 0.76 0.7 0.94 0.88–0.90
SMOTE LAC NB RFE 0.89 0.81 0.68 0.94 0.87–0.89
Original FCM NB Boruta 0.89 0.77 0.69 0.93 0.87–0.89
Original Kmeans NB Boruta 0.89 0.77 0.7 0.93 0.87–0.89
SMOTE FCM LR MRMR 0.87 0.92 1 0.84 0.87–0.88
SMOTE FCM NB Boruta 0.87 0.79 0.7 0.91 0.87–0.89
SMOTE Kmeans NB Boruta 0.87 0.78 0.69 0.9 0.86–0.88
SMOTE IT 60% RF MRMR 0.87 0.77 0.68 0.91 0.86–0.87
SMOTE IT 60% LR Boruta 0.87 0.76 0.69 0.9 0.86–0.87
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dilemma involves the weighing of different factors, includ-
ing AUC, SEN, and SPE. For this kind of model, the AUC 
provides a good assessment of the extent to which the model 
is capable of accurately predicting the presence or absence 
of LVI across all the thresholds computed. However, there is 
a certain tension that exists between the sensitivity and spec-
ificity of a diagnostic model, as applied to concrete clinical 
situations important consequences follow from false nega-
tives and false positives. In terms of LVI, a false negative 
result means that an LVI case is somehow missed, which 
could imply that the patient is not given the most appropri-
ate therapeutic plan, making sensitivity a high-risk factor. 
On the other hand, high specificity is crucial for avoiding 
treatment interventions for disorders that are not present 
due to false positive results which in turn pose physical and 
psychological burden to the patients. A model with high 
sensitivity (true positive rate) is effective at correctly iden-
tifying patients. Therefore, it would flag fewer false nega-
tives, meaning fewer patients who actually have LVI would 
be missed. Consequently, this could reduce the number of 
unnecessary biopsies, as patients flagged as negative by the 
model would have a high likelihood of not having LVI, thus 
reducing the need for further invasive procedures for those 
patients. Our discussion also addresses these trade-offs and 
specifies aspects in the present work where optimal equal 
balance between sensitivity and specificity was sought to 
avoid a costly exchange of one of these advantages for the 
other. It serves the clinician’s purpose of help in choosing a 
right model given the risk tolerances relevant to their clini-
cal practice and the treatment thresholds a model needs to 
meet for the diagnostic information it is going to deliver to 
be clinically useful, as well as necessary.

The selected features are based on the combination of 
IT segmentation with a 45% threshold and RFE feature 
selection (supplemental Table 3) are mainly categorized 
in shape, intensity, and texture features family that are 
correlated with the likelihood of lymphovascular inva-
sion in NSCLC patients, providing a basis for the pre-
diction model. The selected features are organized into 
several categories: shape (Flatness, Maximum3D_Diam-
eter, MajorAxis), first-order (Maximum, 90Percentile, 
Range, RobustMeanAbsoluteDeviation, MeanAbsoluteDe-
viation, RootMeanSquared, 10Percentile, Median, Mean, 
Minimum, Variance, InterquartileRange), and textural, 
which includes GLSZM SmallAreaLowGrayLevelEmpha-
sis, GLSZM SmallAreaHighGrayLevelEmphasis, GLDM 
LargeDependenceEmphasis, and GLSZM SmallAreaEm-
phasis. Shape-based family (Flatness, Maximum3D_Diam-
eter, MajorAxis) provide valuable information regarding 
its growth pattern, invasiveness, and potential response to 
treatment. According to the IBSI radiomic feature definition 
[42], tumors with irregular shapes or larger diameters might 

SMOTE) prediction was low, except for the NB classifier, 
which demonstrated higher sensitivity than other classifiers, 
particularly with MRMR feature selection. The RF classifier 
showed the lowest sensitivity, especially with the MRMR 
feature selection. In the lower plot of Fig. 3, the influence 
of SMOTE is readily apparent, significantly enhancing the 
sensitivity of LVI prediction. As a case in point, the MLP 
classifier, in conjunction with the Boruta feature selection 
method, showed a marked increment in sensitivity follow-
ing the implementation of the SMOTE algorithm, under-
scoring the effectiveness of this resampling technique in 
imbalanced data scenarios.

In the current study, we compared the performance of dif-
ferent segmentation methods, machine learning algorithms, 
and feature selection methods of PET radiomic features in 
predicting LVI in NSCLC patients. We found a 10% varia-
tion between the highest AUC of FCM and IT-60% seg-
mentation. Regarding accuracy, the Boruta feature selection 
demonstrated the highest performance (ACC = 0.90) with 
the IT-45% segmentation, while the RFE feature selection 
showed the highest predictive power (AUC = 0.95) of the 
FCM segmentation. Upon examination, selecting the model 
for segmentation, feature selection, and machine learning 
classifiers might have a 10 to 30% variation in the final 
results. Based on the feasibility of coding for the segmenta-
tion algorithms, iterative thresholding is one of the suitable 
methods with the highest accuracy in NSCLC PET images. 
In the radiomics-based machine learning study, the choice 
of feature selection algorithms and machine learning classi-
fier might depend on the data set.

The SMOTE algorithm, by generating synthetic exam-
ples of the minority class, attempts to balance the distri-
bution of the classes by providing more training samples 
for the minority class. This allows the machine learning 
algorithms to better capture the patterns and features of the 
minority class, resulting in higher sensitivity (the ability to 
identify positive cases correctly). Although SMOTE algo-
rithm improves the sensitivity, it may negatively impact 
ACC and AUC in most machine learning classifiers. This 
is due to the fact that synthetic examples generated by 
SMOTE introduce some level of noise and may cause the 
model to become more prone to misclassifying the major-
ity class. As a result, the overall accuracy and AUC may 
slightly decrease.

The trade-off between sensitivity, accuracy, and AUC 
should be carefully considered when applying the SMOTE 
algorithm. Depending on the specific requirements and pri-
orities of the application, the decision to use SMOTE should 
be based on the relative importance of correctly identifying 
positive cases (sensitivity) versus overall accuracy and the 
balance between the two. In formulating the classification 
models of LVI in lung cancer using PET images, one major 
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Conclusion

The prediction of LVI in NSCLC patients is of great impor-
tance in medical treatment, and radiomics studies have 
shown promising results in this regard. Our findings sug-
gest that the combination of IT segmentation with a 45% 
threshold, RFE feature selection, LR classifier, and SMOTE 
algorithm provides the highest accuracy in predicting LVI 
(AUC = 0.93, ACC = 0.84, SEN = 0.85, SPE = 0.84). It is 
noteworthy that the SMOTE algorithm can improve the sen-
sitivity of the prediction in an imbalanced dataset but may 
have a minor negative impact on ACC and AUC in most 
classifiers. The results of this study demonstrate the poten-
tial of using radiomic features in predicting LVI in NSCLC 
patients. Further research with larger datasets and data aug-
mentation techniques is recommended for validating our 
findings.
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indicate more aggressive behavior. The ‘Flatness’ feature 
can provide insights into the overall 3D shape of the tumor, 
while ‘MajorAxis’ and ‘Maximum3D_Diameter’ measure 
the size and elongation of the tumor. The first-order fam-
ily features are based on the distribution of voxel intensities 
within the tumor region and provide information about the 
overall intensity variations [42]. ‘Mean,’ ‘Median,’ ‘Vari-
ance,’ and other statistical measures describe the central 
tendency, spread, and distribution of voxel intensities. An 
uneven or skewed distribution of intensities might reflect 
the heterogeneity of the tumor, which could be linked to dif-
ferent biological characteristics, potentially impacting LVI. 
GLSZM (Gray Level Size Zone Matrix) features capture 
the relationship between the size of connected regions of 
similar intensity levels in the tumor [42]. ‘SmallAreaLow-
GrayLevelEmphasis’ and ‘SmallAreaHighGrayLevelEm-
phasis’ highlight the influence of small regions with low 
and high gray levels, respectively. These features could be 
linked to the texture and heterogeneity of the tumor, which 
in turn might be related to its aggressiveness and potential 
for invasion. GLDM (Gray Level Dependence Matrix) fea-
tures characterize the dependence between pairs of voxels 
based on their gray-level values [42]. ‘LargeDependence-
Emphasis’ could reflect the presence of larger homogeneous 
regions within the tumor, potentially indicating a more orga-
nized or structured growth pattern [42].

Among the limitations of the current study was the low 
sample size, which prevented the implementation of deep 
learning algorithms for predicting LVI in NSCLC subjects. 
We did not hold out a common test set to maximize data use 
for robust performance metrics via resampling. In addition, 
deep learning fully automated-based segmentation methods 
were not implemented in the current study. Further investi-
gation of their potential is guaranteed. Another limitation of 
this study is that the PET/CT scans were standardized, con-
ducted within a tightly controlled timeframe before surgical 
procedures, and utilized uniform scanner settings and recon-
struction parameters. While this approach strengthens the 
internal consistency of our radiomic analyses, it potentially 
limits the generalizability of our findings across different 
imaging conditions. Radiomic features, particularly texture-
based ones, are known to be influenced by variations in 
acquisition and reconstruction parameters, scanner types, 
and noise levels. To ensure the broader applicability of our 
results, future studies should aim to validate these predic-
tive models across multiple centers with diverse imaging 
setups. In addition, the observed fluctuations in sensitivity, 
ranging from classifying all or no cases as positive in some 
cases, may reflect both the variable nature of LVI presenta-
tion and limitations within our models. Enhancing model 
robustness and diversifying datasets could help stabilize 
these predictions. 
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