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Abstract 

Purpose: 32-time scan duration reduction of 18F-FDG Positron Emission Tomography (PET) images through the 

generation of standard scan duration images using a multi-slice cycle-consistent Generative Adversarial Network 

(cycle-GAN) was studied. Also, the effect of the image augmentation methods on the performance of the cycle-

GAN model was evaluated. 

Materials and Methods: Four subsets of standard and 32-time short scan duration PET image pairs, each 

contacting image data of 10 patients were used to train and test (80 percent for training and 20 percent for testing) 

a multi-slice cycle-GAN separately. Another patient’s image data was used as the validation dataset for different 

training subsets. When training the cycle-GAN model for each subset, two approaches were followed: with and 

without image augmentation. Common image quality metrics of PSNR, SSIM, and NRMSE were used to assess 

the generation performance of the cycle-GAN model. Paired sample t-test statistical testing with a confidence 

interval of 0.95 was used to determine whether the differences between approaches were statistically significant 

or not. 

Results: For subsets 1-3, both training approaches improved the image quality of the short scan duration inputs 

(p<0.001) while for subset 4 only the training approach with image augmentation was capable of improving the 

image quality. However, the training approach with image augmentation offered better results than the approach 

without image augmentation (p<0.001). 

Conclusion: Employing the training approach with image augmentation, the cycle-GAN model was capable of 

improving the image quality of 1/32nd short scan duration images through the generation of synthetic standard 

scan duration images. In the case of the training approach without image augmentation, except for subset 4, the 

model trained on all subsets 1-3 was capable of improving the image quality. Image augmentation does indeed 

improve the performance of the cycle-GAN model, especially in the case of insufficient available training 

datasets. 
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1. Introduction  

Positron Emission Tomography (PET) modality 

provides semi-quantitative and functional data and has 

multiple applications in different subjects of medicine [1-

4]. Positron Emission Tomography / Computed 

Tomography (PET/CT) is an extended modality 

compared to stand-alone PET used for various purposes, 

including diagnosis and prognosis since it has the added 

capability of providing fine anatomical structural 

information [5, 6]. Image quality, cost-efficiency, and 

radiation safety considerations of PET imaging are 

affected by the scan duration or radiotracer dosage [4]. 

Imaging department throughput and patient comfort are 

affected by the scan duration while radiation dose and scan 

cost are controlled by the radiotracer dosage [4]. There are 

sensible reasons for decreasing the scan duration or 

radiotracer injected dose since it addresses important 

matters, including the cost of imaging and addressing 

radiation safety considerations. However, it comes at the 

cost of much more noise in the images with a subsequent 

decrease in the accuracy of diagnosis [4, 7, 8].  

Deep learning methods have found their role in the 

medical imaging field, including diagnosis [9], image 

post-processing, and restoration by performing operations 

like denoising [10 - 21]. Generative Adversarial Networks 

(GANs) are deep learning models learning to capture the 

distribution of data [22]. GANs are typically composed of 

a generator and discriminator network training to 

outperform the other network in an adversarial manner. 

The generator intends to generate more realistic images to 

deceive the discriminator network to label the synthetic 

images as real ones [22]. On the other hand, the 

discriminator network tries to improve its classification 

accuracy to not misclassify synthetic or generated images 

as real ones [4, 22-23].  

Multiple previous studies have attempted to generate 

standard dose/scan duration images from various inputs 

[4, 16, 21, 24-28] and achieved notable results. Xue et al. 

[4] implemented a mapping between low-count sinogram 

data to full-count PET images using a GAN framework. 

As stated by the authors [1], their implementation had the 

advantage of faster reconstruction speed compared to 

iterative methods and the capability of direct 

reconstruction of the full-count images from low-count 

sinogram inputs. Zhao et al. [21], to restore low-dose 

Brain PET images, developed the S-cycleGAN to achieve 

a non-linear and end-to-end mapping. They [21] used the 

cycle-consistency loss, Wasserstein distance, and 

supervised learning loss in their model. They [21] reported 

high accuracy and appropriate efficiency of their model 

using the quantitative evaluation of metrics like Peak 

Signal-to-Noise Ratio (PSNR). Wang et al. [27] used a 

Convolutional Neural Network (CNN) to predict 18F-

FDG PET images using the 6.25% simulated low-dose 

inputs. Ouyang et al. [25] used a GAN along with feature 

matching and task-specific perceptual loss specific to 

generate amyloid PET images with standard-dose using 

only low-dose PET. In this study, 40 PET datasets were 

obtained from 39 patients using a PET/MR scanner. The 

two-dimensional encoder-decoder network has been used 

as a generator to produce standard-dose images and a 

discriminator to evaluate them. The quality of the image 

was evaluated using the PSNR, the Structural Similarity 

index (SSIM) and the Root Mean Square Error (RMSE). 

Finally, the authors concluded that standard-dose PET 

images of amyloid can be produced using very low-dose 

images. Also, it is necessary to apply adversarial learning, 

feature matching, and task-specific perceptual loss to 

ensure image quality and maintain pathological features. 

Lei et al. [29] studied the possibility of reducing scan time 

or injected radiotracer activity in PET imaging and solving 

the subsequent problem of low-count statistics using a 

cycle-consistent GAN model. They proposed this model 

to estimate PET images with diagnostic quality from low 

count data. The authors were able to develop a deep 

learning-based procedure that can correctly estimate PET 

data with diagnostic quality from 1/8th fraction of 

standard photon counts having great potential for 

improving low-count PET image quality. 

However, little or no effort has been made to clarify the 

effect of image augmentation in the process of image 

generation since providing enough data to train the 

generative model is a challenge and it is not always 

feasible to acquire a large amount of data for training due 

to different considerations, including costs of imaging and 

radiation hazards. This matter of low available training 

data can be addressed using image augmentation 

techniques that increase the variability of data available. 

In this study, we aim to assess the effect of image 

augmentation on the performance of the cycle-GAN 

model generating standard scan duration 18F-FDG PET 

images using the 1/32nd short scan duration inputs for four 

different subsets of data. 

The rest of this paper is organized as follows: section 2 

provides details about the materials and methods used in 
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the study. Section 3 reports the results that are discussed in 

section 4. Section 5 concludes the study and states the 

possible future extension to this study. 

2. Materials and Methods  

2.1. Materials 

Using a PET/CT scanner (5-ring BGO-based GE 

discovery-IQ), whole-body PET scans of 41 patients were 

acquired using a standard 18F-FDG radioactivity dose of 

294.52±45.18 MBq. Image data were reconstructed using 

Ordered-Subset Expectation Maximization (OSEM) (four 

iterations and 12 subsets). 1/32nd short scan duration image 

data of the patients were acquired through post-

reconstruction of the image data using the same 

reconstruction settings but with only 1/32nd scan duration 

for each bed position. 

A patient was randomly assigned as the validation 

dataset and the remaining 40 patients were randomly 

divided into 4 subsets (subsets 1 through 4) to explore the 

effects of image augmentation and generation performance. 

More detailed information about the subsets is present in 

Table 1. For each subset, image data of eight patients were 

used for training the multi-slice cycle-consistent generative 

adversarial network (cycle-GAN) and the image data of the 

two remaining patients were used for testing the 

performance of the cycle-GAN. 

2.2. Methods 

2.2.1. Image Generation 

GANs are used for image generation using a mapping 

learned from input-target pairs or data distributions. In this 

study, a cycle-GAN is used for style transfer or mapping 

between short scan duration images (referred to as shortSD) 

as input and standard scan duration images (referred to as 

StandardSD) as targets. Cycle-GAN offers better 

performance over simple GAN and mostly has overcome 

previous GAN types problems [4, 30, 31]. Cycle-GAN has 

two generator and discriminator network pairs (one for short 

to standard scan duration generation and one in the reverse 

direction). The generator generates synthetic images and the 

discriminator tries to differentiate between synthetic and 

original images. Both generator and discriminator try to 

improve their performance leading to the overall improved 

performance of the cycle-GAN network. The image 

dimensions are (192, 192) and the three following slices are 

stacked together in to provide multi-slice input to the cycle-

GAN network and decrease the training time. The ADAM 

optimizer with a learning rate of 0.0002 was used to optimize 

the models. More detail about the generator and discriminator 

models’ structure is provided in Figures 1 and 2. 

2.2.2. Implementation Process 

We followed two approaches when training the cycle-

GAN model for each subset: first, training the cycle-GAN 

for 250 epochs Without Image Augmentation (WoIA). 

Second, training the cycle-GAN With Image 

Augmentation for 250 epochs (WIA). In this study, image 

augmentation is achieved through methods that do not alter 

the pixel values of the images for the simplicity and 

consistency between short and standard scan duration 

image counterparts. Before each epoch, all Image pairs 

(short scan duration and standard scan duration) go through 

the following process of image augmentation. All 

augmentations steps were done randomly: 

𝑈𝑝 𝑎𝑛𝑑 𝑑𝑜𝑤𝑛 𝑓𝑙𝑖𝑝 → 𝐿𝑒𝑓𝑡 𝑎𝑛𝑑 𝑟𝑖𝑔ℎ𝑡 𝑓𝑙𝑖𝑝 →

𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑠 𝑜𝑓 45 𝑑𝑒𝑔𝑟𝑒𝑒 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 

(0, 45, 90, 𝑎𝑛𝑑 135 𝑑𝑒𝑔𝑟𝑒𝑒𝑠) 

 

Table 1. Detailed information about the data used in this study 

Subsets Standard Scan Duration (s) Activity (MBq) Number of slices 

Subset 1 
Train 541.25±87.66 267.6±3.54.96 2808 

Test 570±77 285.83±50.88 702 

Subset 2 
Train 660.63±84.15 328.34±48.18 2937 

Test 675±35 311.45±28.21 768 

Subset 3 
Train 570 ±89.24 286.11±45.53 2871 

Test 780±130 301.33±18.72 768 

Subset 4 
Train 622.5±46.21 301.13±22 2778 

Test 620±30 264±11.28 702 

Validation 570 284.9 351 
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2.2.3. Performance Evaluation Metrics 

The performance of the cycle-GAN model on 

different subsets (with and without augmentation) was 

evaluated using the PSNR, SSIM [32] and Normalized 

Root Mean Squared Error (NRMSE) (Equations 1-3). 

PSNR measures the noise level of the test images 

(short scan duration and synthetic standard scan 

duration) compared to the ground truth images 

(standard scan duration). SSIM measures the 

similarity of structures present in the two images 

(short and synthetic standard scan duration compared 

to original standard scan duration). NRMSE is also a 

measure of the error between test and standard scan 

duration images.  

𝑃𝑆𝑁𝑅 = 10 log10 (
𝑀𝐴𝑋2

1
𝑛

 ∑ (𝑇𝑖 − 𝐼𝑖)
2𝑛

𝑖=1

) (1) 

𝑆𝑆𝐼𝑀 =  
(2𝜇𝑇𝜇𝐼 + 𝐶1)(2𝜎𝑇𝐼 + 𝐶2)

(𝜇𝑇
2 + 𝜇𝐼

2 + 𝐶1)(𝜎𝑇
2 + 𝜎𝐼

2 + 𝐶2)
 (2) 

𝑁𝑅𝑀𝑆𝐸 = √∑
(𝑇 − 𝐼)2

𝑛

𝑛

𝑖=1

 (3) 

In Equations 1-3, 𝜇, and 𝜎 stand for mean and 

variance. Also, T, I, n, and MAX denote original 

value, predicted value, number of pixels, and 

maximum pixel value. C1 and C2 are constants used 

in the calculation of the SSIM. To determine whether 

the difference between synthesized (generated) 

standard scan duration and original standard scan 

duration images (ground truth used for calculation of 

metrics) in terms of PSNR, SSIM, and NRMSE 

metrics are statistically significant, we used the paired-

sample t-test with a confident interval of 0.95. 

3. Results  

For all subsets of data, both training approaches 

(with and without augmentation) of the cycle-GAN 

model were capable of improving the image quality 

evaluation metrics i.e., PSNR, SSIM, NRMSE. The 

paired sample t-test statistical testing was performed 

with a confidence interval of %95 to determine 

whether the difference between the results was 

statistically significant. Table 2 presents the results of 

the cycle-GAN model for all subsets and both training 

approaches. Differences between all results were 

proved to be statistically significant (p<0.001). 

Although both approaches lead to quality 

improvement of the short scan duration images, 

 

Figure 1. The structure of the U-shaped generator network has Add and Concatenate skip connection 

to preserve the structural details as the network deepens 

 

Figure 2. The structure of the discriminator network 
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however, training the cycle-GAN model with the 

image augmentation approach leads to better 

performance of the model. 

Exploring the performance of the model after each 

training epoch can provide useful insight into the 

effects of image augmentation. For this purpose, we 

analyzed the performance of the cycle-GAN model 

trained using different training subsets on a separate 

subset of patient image data (validation subset) to 

observe the changes in the metric values. Figures 3-5 

plots the value changes of the PSNR, SSIM, and 

NRMSE metrics during the training process for all 

four subsets. 

4. Discussion  

Using a multi-slice input cycle-GAN, we synthesized 

standard scan duration PET images. Synthetic image 

quality was improved compared to the short scan 

duration inputs in terms of PSNR, SSIM, and NRMSE 

metrics for all four subsets using image augmentation 

approaches. In the case of the training approach without 

Table 2. Results of the standard scan duration PET image generation using the 1/32nd short scan duration input on test 

data of each training subset 

Subset 

PSNRa SSIMb NRMSEc 

shortSDd 
sStandardSDe 

(WoIAf) 

sStandardSD 

(WIAg) 
shortSD 

sStandardSD 

(WoIA) 

sStandardSD 

(WIA) 
shortSD 

sStandardSD 

(WoIA) 

sStandardSD 

(WIA) 

1 27.8770 30.8170 31.1178 0.929116 0.943015 0.944623 0.049078 0.032113 0.031690 

2 26.2693 30.2898 30.4851 0.927221 0.944137 0.945881 0.053920 0.032654 0.032487 

3 26.340558 29.119623 30.040367 0.920549 0.930521 0.937733 0.054980 0.036639 0.033876 

4 27.914110 27.914252 31.625818 0.934889 0.934889 0.951590 0.046740 0.046739 0.028404 

a: Peak signal-to-noise ratio with the standard scan duration images as ground truth. b: Structural similarity index 

regarding the standard scan duration images. c: Normalized root means squared error. d: Short scan duration. e: 

Synthetic standard scan duration. f: Training approach without image augmentation. g: Training approach with image 

augmentation 

 

Figure 3. Changes of the PSNR metrics with the increasing training epochs number for both training approaches 

(with and without augmentation) for all four subsets 
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Figure 4. Changes of the SSIM metrics with the increasing training epochs number for both training approaches (with 

and without augmentation) for all four subsets 

 

Figure 5. Changes of the NRMSE metrics with the increasing training epochs number for both training approaches (with 

and without augmentation) for all four subsets 
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image augmentation, except for subset 4, all of the 

other subsets experience improvement in considering the 

PSNR, SSIM, and NRMSE metrics. Table 2 reports the 

results of the PSNR, SSIM, and NRMSE metrics for all 

four subsets in the case of training approaches with and 

without augmentation (WoIA and WIA, respectively). 

WIA approach provided statistically and significantly 

better results than the WoIA approach, especially in the 

case of subset 4 where the WoIA approach failed to 

improve the image quality of the short scan duration 

inputs while the WIA approach yielded better results 

consistent with the other subsets (1-3). The model trained 

on the subset 4 dataset using the without image 

augmentation training approach collapsed and could not 

synthesize standard scan duration PET images; whereas, 

the model trained using the training approach with image 

augmentation approach provided a notable outcome. 

Also, this could be considered as another merit to image 

augmentation which is to prevent models from 

collapsing. 

Figures 3-5 plot the curves of the PSNR, SSIM, and 

NRMSE metrics calculated after each epoch of training 

for all subsets and both training approaches. It is 

noticeable that the model trained using the approach with 

image augmentation keeps on improving as the training 

epoch increases and surpasses the model trained using 

the approach without image augmentation. 

Image augmentation techniques used in this study, i.e., 

random up-and-down flip, random left-and-right flip, 

and multiple 45-degree rotations were all basic image 

augmentation techniques compared to much more 

advanced techniques. It was shown that image 

augmentation techniques do improve the image 

generation performance of the generative models, 

including the cycle-GAN model, especially in the case of 

standard scan duration PET image generation that could 

be extended to other applications as well. However, more 

complicated and sophisticated image augmentation 

techniques should be adopted and evaluated as the 

techniques employed in this study did not alter the pixel 

values of the images. 

Xu et al. [4] evaluated the PSNR, SSIM, and NRMSE 

metrics. Using raw list-mode count data and 0.5% 

resampling, 200-time low-dose data were acquired 

which is so much lower than the 32-time lower scan 

duration data used in this study. They reported a 

19.395%, 7%, and 73.75% improvement of two selected 

slices of the brain regarding the PSNR, SSIM, and 

NRMSE metrics. However, in our study using the 

without image augmentation method, PSNR, SSIM, and 

NRMSE improved on average for all subsets by about 

9.101%, 1.101%, and 26.842%, respectively. The image 

augmentation approach did improve the performance 

with 13.754%, 1.834, and 38.198% improvement of the 

PSNR, SSIM, and NRMSE metrics, respectively. 

Although the results of the study implemented by the Xu 

et al. [4] are better, their study was dedicated to the brain 

region while our study was using whole-body data. Zhao 

et al. [21] used 10% and 30% of the original counts as 

the low-dose inputs. They also measured the PSNR, 

SSIM, and NRMSE metrics. Excluding the PSNR, 

which experienced a 0.824% and 0.034% decrease for 

10% and 30% low-dose inputs, the SSIM improved by 

1.975% and 0.303% for 10% and 30% low-dose inputs. 

The NRMSE metrics were also improved by 31.4% and 

14.84% for 10% and 30% low-dose inputs. Our study, 

with much fewer data and using the whole-body data, 

compared to brain data used by Zhao et al. [21], offered 

better results. Although some studies had better results, 

however, to the best of our knowledge, the effect of 

image augmentation on the performance of the standard 

scan duration or standard-dose PET images is not 

evaluated in related works. 

The following study has multiple advantages and 

disadvantages. Few studies have explored the 32-time 

reduction in scan duration or injected 

radiopharmaceutical. Also, exploring the effect of image 

augmentation on the performance of deep learning 

models for the task of generating standard scan duration 

or standard-dose PET images is scarce. We evaluated the 

performance of our model with and without image 

augmentation approaches for four different subsets. 

Nonetheless, there are shortcomings to this study. It 

would be better to have more patient data in each training 

subset to have a more comprehensive evaluation. Much 

more advanced image augmentation methods should be 

explored to determine the difference in the performance 

of image augmentation methods in this specific task. 

5. Conclusion 

In this study, we trained a multi-slice cycle-GAN 

using four subsets of 1/32nd short scan duration and 

standard scan duration PET image pairs using two 

training approaches: with and without image 

augmentation. Both approaches improved the image 
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quality of the short scan duration inputs. However, 

models trained using the image augmentation 

approach offered statistically significant and better 

results than those without the image augmentation 

approach. Image augmentation proves to be useful 

when a more comprehensive dataset is not available 

for applications like the generation of synthetic 

standard scan duration PET image of this study. A 

more comprehensive study should also be conducted 

about other more advanced and sophisticated 

techniques of image augmentation. 
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