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Abstract

Purpose: This study aimed to investigate the impact of image g
(GLD) and different Interpolation Algorithms (1A) on ®
Non-Small Cell Lung Cancer (NSCLC).

Materials and Methods: One hundred and se
statistic features were calculated from a setg
of 20 non-small cell lung cancer delineated tun !
discretization schemes with the number ylevels of 16, 32, 64, 128, and 256, and four Interpolation algorithms,
including nearest neighbor, tricubic ¢
was based on 3D region growing-based. class Correlation Coefficient (ICC), Overall Concordance Correlation

s, including Gray Level Discretization
xyglucose (**F-FDG) radiomics features in

o0 ragliomics features from the first-, second-, and higher-order
missioAPT omography/Computed Tomography (PET/CT) images

and select robust features. ICC a < 0.5 presented weak reliability, ICC and OCCC between 0.5 and 0.75
illustrated appropriate reliability, valtgswithin 0.75 and 0.9 showed satisfying reliability, and values higher than 0.90
indicate exceptional reliability. Besides, features with less than 10% COV have been selected as robust features.

Results: All morphology family (except four features), statistic, and Intensity volume histogram families were not
affected by GLD and IA. And the rest of them, 10 and 61 features showed COV < 5% against GLD and IA, respectively.
Ten and 80 features showed excellent reliability (ICC values greater than 0.90) against GLD and IA. Eight and 60 features
showed OCCC>0.90 against GLD and IA, respectively. Based on our results Inverse difference normalized and Inverse
difference moment normalized from Grey Level Co-occurrence Matrix (GLCM) were the most robust features against
GLD and Skewness from intensity histogram family and Inverse difference normalized and Inverse difference moment
normalized from GLCM were the most robust features against IA.

Conclusion: Preprocessing can substantially impact the 18F-FDG PET image radiomic features in NSCLC. The
impact of gray level discretization on radiomics features is significant and more than Interpolation algorithms.

Keywords: Non-Small Cell Lung Cancer; Gray Level Discretization; Interpolation Algorithms; Radiomics Features;
Positron Emission Tomography/Computed Tomography.
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1. Introduction research can assess feature reproducibility and repeatability,
also can be used to feature selection utilizing the
Concordance Correlation Coefficient (CCC) or Intraclass
Correlation Coefficient (ICC) threshold values [13]. The
Gray Level Discretization (GLD) and Interpolation
Algorithms (1A) methods have shown a direct effect on
the reproducibility of texture features. The GLD and 1A
methods have shown a direct effect on the reproducibility
of texture features. The effect of preprocessing on the PET
texture features is considerable especially GLD and IA, and
it is suggested in many studies, a precise examination of
the impact of these parameters is necessary before any
PET radiomics features clinical application. For example,
Shafig-ul-Hassan et al. [12] Studied the impact of grey
level discretization on PET radiomics features in lung
Recently, numerous researchers have investigated  cancer phantom and concluded that radiomics researchers

the potential of radiomics features to predict patient should estimate p e imaging biomarkers' dependence
consequences non-invasively [5-9]. Radiomics aims [5] arue et al. [13] examine the

to enhance the predictive and diagnostic value of medical ssing, including grey-level
images by converting images to data [10]. These features

Lung cancer is one of the main reasons for cancer-
related deaths globally. In 2018, more than 3.6 million
patients with lung cancer and 2.1 million lung cancer-
related deaths were recorded in the world [1]. With 70%
of lung cancer diagnoses following the opening of signs
from limited or metastatic disorder, the five-year survival
rate of lung cancer following investigation is observed in
just 17% of patients [2, 3]. When the cancer is diagnosed,
the survival rate is higher than 50% [4]. Sorrowfully, just
15% of lung cancers are investigated at the first stages, and
a reliable and affordable experiment method is still a
significant need.

intend to quantify tumor characteristics such as intensity, able radiomic features with CCC>0.85. Their
heterogeneity, and shapes associated with clinical results t image preprocessing especially grey-
and promote personalized cancer therapy [11]. Radiomics Isckgtization, has a |arge impact on PET radiomics
feature extraction framework can be divided into differe Itazi et al. [14] examined the impact of tumor
steps, including data acquisition, image preprogessing; S, segmentation, reconstruction, and gray level discretization
segmentation, radiomics feature extractionge [*8F]-Fluorodeoxyglucose (*F-FDG) radiomics features

and showed 81.3% of radiomics features scored Dice
coefficient > 0.75. Shiri et al. [15] studied the impact
of reconstruction on *F-FDG radiomics features and
showed the 45% of features have Coefficient Of
Variations (COV) <0.05. This study aimed to examine
the influence of a wide range of gray level variability

research, there are novel trials to succeed in a particular ~ from 16, 32, 64, 128, and 256 and three different
step of the radiomics framework before proceeding from Interpolation algorithms on PET radiomics features in
thought to clinical application [12]. A fundamental hurdle ~ Non-Small Cell Lung Cancer (NSCLC) and selecting
is to guarantee medical image features with predictive ~ Fobust features against GLD and IA in lung cancer.
and/or prognostic value are robust to required image

processing steps along with the radiomics principle. Like 2. Materials and Methods

any biomarkers, the repeatability and reproducibility of

potential in both Positron E
and Computed Tomography (

radiomics features can be affected by different parameters. 2.1. Patient Images

For instance, image-acquisition methods, test-retest

repeatability, reconstruction algorithm, and multi- In this study, the images acquired with Discovery 690
center reproducibility all take part in questioning the PET/CT scanner (GE Healthcare), It has 24 detector rings
repeatability and reproducibility radiomics features. cover 15.7 cm axially and 70 cm Transaxial Field Of View

Improved repeatability and reproducibility of radiomics (FOV). This scanner is also equipped with a 64-slice CT
features, with respect to different parameters such as scan system, which has 58,368 solid-state detectors. Intotal,
pre- and post-processing including segmentation, data 20 patients' images with NSCLC were examined (11 men,
acquisition, gray level discretization, and Interpolation and 9 women, mean age: 45 £ 15y). All patients had
algorithms is beneficial. Phantom studies and test-retest biopsy-proven NSCLC, Adenocarcinoma (AC), and went
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through PET/CT as part of the standard diagnostic staging and where diversity is deemed essential. 2019b software.
path. All Patients were injected with 300.0 + 56.8MBq of 3D region growing-based segmentation was used for
BE.FDG and scanned 50-60 minutes following the lesions Volume Of Interest (VOI) segmentation. The
injection. The PET acquisition for 20 patients was algorithm is a statistical region growing that needs one or
conducted using the Ordered Subset Expectation more seeds as input. The vicinity (standard deviation and
Maximization (OSEM) algorithm with the modelling of the the mean of the intensity) is measured by the statistical
Point Spread Function (PSF) and 18 subsets and three pattern on the seed points regions. The method is iterated on
iterations. To cover the whole body area (from skull to mid- similarly to standard data clustering algorithms that the
thigh), seven to eight-bed positions were acquired. The reproducibility of segmentation with it is approved in a
post-reconstruction 6.4mm full width at half maximum recent study [16] (Figure 1).

(FWHM) filter was applied to the images. Also, low dose

) ; Besides, since amounts of numerous radiomics features
CT data were used for Attenuation correction.

depend on the number of grey levels located inside the
segmented region, the application of an FBN discretization
provides for a primary association of feature values over
various investigated Region Of Interest (ROIS).

2.2. Image Segmentation
All segmentations were applied using the Matlab

2.3. Post-Processing Methods 2.3.2. InterpgfatiogAlgorithms

2.3.1. Gray Level Discretization Vari algorith are frequently applied for
i study, to examine the impact of the IA
ures, four Interpolation algorithms,
earest neighbor, tricubic convolution and

All of the image post-processing was applied to the
images using the SERA package [18] in Matlab. Two ways
to discretization are frequently utilized. The first method e interpolation, and trilinear were applied to the
includes the discretization to a Fixed Bin Numbe ith fixed bin size 64 gray level before tumor
and the other one involves a fixed wi S. elineation. Interpolation algorithms interpret the intensities
at the images of the primary image grid through an

may advance them properly suited for special gaalsg27]. In interpolation one. Their center spatially represents the
this study, to investigate the impact of Gestati abetes voxels of these grids. Numerous algorithms are frequently
Mellitus (GDM) on ®F-FDG ragi in  utilized for interpolation, including nearest neighbor,
NSCLC, all images were proc ifferentfange of tricubic convolution and tricubic spline interpolation, and
gray levels of 16, 32, 64, 128, an in numbers trilinear. To describe shortly, nearest-neighbor interpolation

with linear Interpolation algorithm.<Bixed bin number indicates the most nearly voxel's intensity in the primary
methods are defined as follows: grid toward all voxel in the interpolation grid. Trilinear-
Xguk—X gumin interpola_tion utilize_s the inten_sities of the eight most_ nearly

Xgx = {[ 9 Xguman—xgumin| T 1 Kouk < Xgumax 4y voxels in the primary grid to measure a different
N, s Xguk = Xgimax interpolated intensity utilizing linear interpolation.

i i i i i Tricubic-spline interpolation and tricubic-convolution
A_t Equation 1 (Xgl Isthe intensity and Ng Is the number induce a broader neighborhood to estimate a continuous,
of bins.) smooth third-order polynomial at interpolation grid in the
The FBN method includes a normalizing impact that ~ voxel centers. The distinction between tricubic-spline and

may be advantageous if intensity factors are unpredictable  tricubic-convolution interpolation  prevails in  the

- ' »

o

Figure 1. 3D-region growing-based segmentation in Matlab
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implementation. Whereas tricubic-convolution approaches
the answer utilizing a convolution filter, tricubic spline
interpolation estimates the continuous and smooth third-
order polynomial at each voxel center [31].

2.4. Feature Extraction

Radiomics features were extracted using SERA code
[18]. Overall, One hundred and seventy two radiomics
features, including Morphology (n=29), Intensity

histogram (n=23), Intensity-based statistics (n=18),
Intensity-volume histogram (n=7), Grey level run length
matrix (GLRLM) (n=16), Grey level co-occurrence
matrix (GLCM) (n=25), Grey level distance zone matrix
(GLDZM) (n=16), Grey level size zone matrix (GLSZM)
(n=16), Neighboring grey level dependence matrix
(NGLDM) (n=17), and Neighborhood grey tone
difference matrix (NGTDM) (n=5) were extracted from
each lesions. Radiomics features and their family are listed
in the Table 1.

Tablel. One hundred and seventy-two Radiomics features extracted from patient images

Family Image Biomarker Family Image Biomarker
Volume (mesh-based)
Volume (counting) Joint maximum
Surface area Joint average
Surface to volume ratio Joint variance
Compactness 1 Joint entropy
Compactness 2 erence average
Spherical disproportion Difference variance
Sphericity fference entropy
Asphericity Sum average
Centre of mass shift Sum variance
Maximum 3D diameter Sum entropy
Major axis length Angular second moment
Minor axis length Contrast
Least axis length C urr Dissimilarity
Morphology Elongation ix mer Inverse difference
Flatness 9 Inverse difference normalized
Volume density (AABB) Inverse difference moment
Area den5|ty (AABB) Inverse difference moment normalized
Volume der!SIty (OMBB) cm_inv_diff_mom_norm_3D_comb
Area density (OMBB )
Volume density (. Imgcr)??e\ll:trif:ce
Autocorrelation
Cluster tendency
Cluster shade
Cluster prominence
Information correlation 1
Moran's | index Information correlation 2
Geary's C measure
Mean
g@r\:\?\:é:; Short runs emphas_is
(Excess) kurtosis Long runs emphasis -
Median pr grey level run empha5|_s
Minimum High grey level run emphasis _
10th percentile Short run Ic_Jw grey level emphaSI_s
90th percentile Short run high grey level emphas_ls
Maximum ) Long run Ic_)w grey level empha5|_s
Statistics Interquartile range Run length matrix Long run high grey level emphasis
Range (3D, merged) Grey level non-uniformity

Mean absolute deviation
Robust mean absolute deviation
Median absolute deviation
Coefficient of variation
Quartile coefficient of
dispersion
Energy
Root mean square

Grey level non-uniformity normalized
Run length non-uniformity
Run length non-uniformity normalized
Run percentage
Grey level variance
Run length variance
Run entropy
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Family Image Biomarker Family Image Biomarker
Mean
Variance
Skewness
Kurtosis
Median Small zone emphasis
Minimum Large zone emphasis
10th percentile Low grey level emphasis
90th percentile High grey level emphasis
Maximum Small zone low grey level emphasis
Mode Small zone high grey level emphasis
Interquartile range Large zone low grey level emphasis
Intensity Range Size Zone Matrix Large zone high grey level emphasis
Histogram Mean absolute deviation (3D) Grey level non-uniformity
Robust mean absolute deviation Grey level non uniformity normalized
Median absolute deviation Zone size non-uniformity
Coefficient of variation Zone size non-uniformity normalized
Quartile coefficient of Zone percentage
dispersion Grey level variance
Entropy Zone size variance
Uniformity Zone size entropy
Maximum histogram gradient
Maximum gradient grey level
Minimum histogram gradient
Minimum gradient grey level
Small distance emphasis
Large distance emphasis
Volume fraction at 10% Low grey level emphasis
intensity I-_Ilgh grey level emphasis _
Volume fraction at 90% Small d_|stance I(_)W grey level empha5|_s
intensity Small dl_stance high grey level emphas_ls
Intensity Intensity at 10% volume Large d_lstance #qu grey IlevelI empr;]as[s
Volume Intensity at 90% volum tan. ne Large distance hig grey level emphasis
Histogram Volume fraction differen atrix (3D) Grey level non-uniformity

between 10% and 90% intensi
Intensity difference be
10% and 90% vol

Area under the | urve

Grey level non-uniformity normalized
Zone distance non-uniformity
Zone distance non-uniformity normalized
Zone percentage
Grey level variance
Zone distance variance
Zone distance entropy

Family

Image biomarker

Neighborhood grey tone difference matrix
(3D)

Coarseness
Contrast
Busyness
Complexity
Strength
Low dependence emphasis
High dependence emphasis
Low grey level count emphasis
High grey level count emphasis
Low dependence low grey level emphasis
Low dependence high grey level emphasis
High dependence low grey level emphasis
High dependence high grey level emphasis
Grey level non-uniformity
Grey level non-uniformity normalized
Dependence count non-uniformity

Dependence count non-uniformity normalized

Dependence count percentage
Grey level variance
Dependence count variance
Dependence count entropy
Dependence count energy
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2.5. Statistical Analysis

To demonstrate the impact of GLD and I A on radiomics
features, different statistical analyses were performed.
ICC, Overall Concordance Correlation Coefficient
(OCCC), and Coefficient Of Variations (COV) were
calculated for each feature [14,15]. Based on Koo and
Li's study [34], two-way random effects with an absolute
agreement and multiple raters were used for ICC
calculation. ICC and OCCC values < 0.5 demonstrate weak
reliability, ICC and OCCC between 0.5 and 0.75 show
reasonable reliability, values within 0.75 and 0.9 indicate
satisfying reliability, and values higher than 0.90 indicate
exceptional reliability [19]. Furthermore, radiomics features
with less than 10% COV over different GLD or
Segmentation Methods (SM) have been selected as
robust features [15]. For ICC [20-22] and OCCC [23,
24] calculation we used ‘irr’ (0.84.1) and ‘epiR’ (2.0.19)
libraries in R software, respectively.

3. Results

3.1 Impact of Gray Level Discretization

In this study, we had 20 PET NSCLC image$W
All images were processed and five differg @
including 16, 32, 64, 128, and 256 were applicdfio

images. The ICC, OCCC, and COV v

and Intensity volume histogram fea were eliminated
from further analysis. Ten features showed less than 10%
COV, including Inverse difference normalized, Inverse

Gray level

100% ]
90%
80%
70%

60%
50%
40%
30%
20%
10%
Q
O
S

0% -

EHCOV10% m10%<COV20% mCOV>20%

difference moment normalized, Information correlation 2,
Correlation of GLCM family, Skewness, Coefficient
of variation, and Quartile coefficient of dispersion of
Intensity histogram family and Dependence count entropy
of NGLDM family. Four features showed 10<COV<20,
and 103 features (87% of 118 features) showed more than
20% COV. ICC results showed ten features were
exceptional reliability (ICC> 0.9) such as Inverse difference
normalized, Inverse difference moment normalized,
Information correlation 2, Correlation of GLCM family,
Skewness, Kurtosis, Coefficient of variation, Quartile
coefficient of dispersion of Intensity histogram family, Run
length non-uniformity of GLRLM family and Coarseness
of NGDTM. Eleven features showed 0.9<ICC>0.75,
and 9 features were reasonably reliable. Eighty-four
radiomics features (71% of 118) showed less than 0.5
ICC over GLD. statistical analysis showed eight
features have valties 0.9, such as Inverse difference
rence moment normalized,
kewness, Kurtosis, Coefficient
uartile coefficient of dispersion of
family, and Coarseness of NGDTM.
d thiree features showed satisfying reliability and
reliability, respectively.

Figure 2 depicts the percentage COV of each radiomics

ture family over different gray levels and Interpolation
algorithms. In Figure 3 we represent the ICC and OCCC
values concentration over different gray level variability
and Figure 4 illustrates bar plots depicting the percentage
of four ICC and OCCC categories for different image
preprocessing methods over all radiomic features, our
results indicate the impact of gray level variability on
features is significant, and about 73% and 89% of ICC

Interpolation

100% _ N
80%
60%
40%

20%

o = _
S S g S
O @ F e o
\
&
<@
S

HCOV10% m10%<COV20% mCOV>20%

Figure 2. Percentage COV of radiomics features’ family (the left figure is for the GLD and the right one is for I1A)
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and OCCC values are less than 0.5 which shows weak
reliability.

Percentage COV has been categorized into three groups:
COV lesser than 10 percent are highly robust, and COV
between 10 to 20 percent are robust, and COV of more
than 20 percent are not robust. Interpolation algorithms
between zeros to one. It can be observed that ICC and
OCCC values concentration of gray level variability
are about 0.25 or less. In Figure 5 we illustrate the
probability density (PD) of ICC and OCCC distribution
for various radiomic features over different gray levels
variability and Interpolation algorithms which is used
to present a quantitative analytical description of OCCC
and ICC. In PDD, peak value and shape can be utilized

1.00
0.75

3

2 0.50

>
0.25

ICC Gray level

Percent
L)
o

ICC Gray level ICC Interpolation

ICC Interploallon

Figure 3. ICC and OCCC values concentration withi
75
ZSLQ I
: [

OCCC Gray level

to analyze the ICC results. Precisely, in the current study,
we utilize this structure to evaluate how radiomic features
are affected over various image post-processing methods.
This Figure demonstrates the concentration probability
of ICC and OCCC values of gray level impact on radiomics
features are lesser than 0.5, and specially OCCC values
concentration probability are lower than 0.25. In Figure 6,
we represent the variability of various radiomics
features with the percentage of COV over different
gray levels and Interpolation algorithms. Forty-four
features (37% of 118) showed more than 100% COV
over different gray level variability.

OCCC Interploation

producible and 1= highly reproducible)

OCCC Interpolation

Group
Wl 1veive<son
2 50%<Value<75%
375%<Value<g0%
B +o0%<vaie<ioo%

Figure 4. ICC and OCCC bar plots for Image preprocessing including gray level discretization and Interpolation

Method
ICC Grav level

|| icc interpotation

| | occe eray lever
OCCC Interpolation

0.00 0.25 0.50 0.75 1.00
Value
Figure 5. A Probability Density Distribution (PDD) plot compares ICC and OCCC values of various radiomics
features over different gray levels and Interpolation algorithms using peak values and shape of each plot. X-axis:
ICC and OCCC value; y-axis: density value
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Figure 6. Percentage COV of features over different gray levels and Interpolation algorithms
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Figure 7 indicates the ICC and OCCC values (categorized features extracted from discretization different gray level
1to 4: 1 =1low and 4 = highly robust) of various radiomic variability Interpolation algorithms of images.
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Figure 7. ICC and OCCC heat map of the percentage values of radiomics features categorized in 4 groups over different
gray level and Interpolation algorithms. (Categorized 1 to 4: 1 = low and 4= highly robust)
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4. Discussion

The consent of radiomics, considering other -omics,
outlines robust labels for personalized medicine
administrations. One of its possible utilization might be
in tracking and predicting clinical outcomes for numerous
treatment planning. Oikonomou et al. [25] recognized a
significant relationship between *F-FDG PET radiomics
features and lung cancer staging.

Although the application of radiomic features as a
quantitative marker for diagnosis and prognosis, staging
or predicting response to therapy is a growing utilization
of FDG PET, examining the robustness, reliability, and
reproducibility of such image biomarker within physical
or biological factors have determined to be a measure
of vast significance. Besides, numerous medical image
factors cause distinctive hurdles while extracting and
quantifying the tumor’s FDG uptake data. The evaluation
of reproducibility and repeatability for medical image
radiomics features has earned growing attention [26].
Gathering proof recommends the value of taking such
investigations into account. Researches have indicated
that repeatable radiomic features must be applied f
predictive treatment modeling [27]. This studymaiine

[28-30]. Our study was led usin
compatible with the IBSI [3 Sl
global collaboration working appr@achin
of image biomarkers.

In a recent study, Larue et al. [33] showed that nearly
all of the radiomics features vary in value while changing
bin width for gray-level discretization, and in some
features, a considerable or a minimal bin width ended
in distinctive values in scanning. They showed that
feature values fluctuate over various bin widths, but it
could not prove that the selection of bin width dramatically
influences the stability of radiomic features. The impact
of GLD on the predictive ability of radiomic features has
not been examined yet.

Our analysis showed that preprocessing, mainly gray
level variability, can substantially impact the radiomics
features. As we can see in Figures 3, 4, and 5 the
concentration of ICC and OCCC values are located in less
than 0.5, demonstrating the massive impact of gray level

XX

variability on features. Our results showed ten features
showing COV less than 10%, including four GLCM family
features, three features of the Intensity histogram family,
and four features showed 10<COV>20. None of the
NGTDM and GLSZM families illustrated reproducibility;
therefore, all of them were admitted sensitive to gray-
level discretization. As a comparison, Altazi et al. [14]
showed 18% percent of the GLCM family is highly
reproducible, and the same showed none of the NGTDM
and GLSZM families are robust against GLD.

Shafig-ul-Hassan et al. [32] confirmed that resampling
decreased the variability of features from COV>70%
to COV<30%. Consequently, we suggest regularly apply
resampling before any radiomic study. Our data were
resampled to an isotropic voxel size of 2x2x2mm? which
was suggested by IBSI using a nearest-neighbor, linear,

onfirmed that linear interpolation
llest value of the features range about
res and cubic-interpolation for 30% of
as, while nearest-neighbor interpolation showed
considerable extent, 61% of all. Hence, linear
and/or cubic interpolations are preferred over nearest-

ighbor interpolation for the 1x1x3mm?® voxels resampling.

In our study, the majority of the local texture features
extracted from the images showed COV>20% against
parameters. These texture features are categorized into
separate families. Radiomics features that focus on low-
intensity areas and small homogenous inside the tumor
mass indicated great sensitivity to gray-level variation.
As we observed from our result, forty-four features (25%
of all) showed more than 100% COV over different gray
level variability. These results can be observed in other
studies [14]. The GLCM family showed more robust
features against gray level variability with four robust
features among texture features. Other texture features
are highly influenced by gray-level variation. Furthermore,
altogether, about 7% of texture features showed COV<10%.
Similarly, 5 of 23 intensity volume histogram features
showed COV<10% against GLD. This result was
supposed due to; initially, they have great fluctuations
because of their absence of measuring meaningful data
of uptake heterogeneity inside the segmented lesions.
Last but not least, it is due to the sensitive process
applied to extract those features.
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We calculated shape-based radiomics features to
demonstrate the morphological features explaining the
distribution of voxel-intensity of segmented lesions
externally regarding spatial relations among neighboring
voxel; therefore, all of the shape-based radiomics features
illustrated insensitivity against GLD, our result are
fully match with Altazi et al. [14].

On the contrary, Shafiq et al. [32] did not report the
same results toward PET radiomics features. However,
GLCM features indicated more reproducibility following
the correction for gray-level and volume dependence.

Our results illustrated that the impact of different
Interpolation algorithms on radiomics features is lesser
than GLD. As we can see in Figures 3, 4, and 5, the
concentrations of ICC and OCCC Interpolation algorithms
s' values are located at more than 0.75. Also, our COV
results demonstrated that 34% of radiomics features are
robust against Interpolation algorithms. This percentage
can be increased if we add the morphology, Statistics,
and Intensity volume histogram family features to the
number of robust features. The primary limitation of
this study was the size of the data set. Future research
should utilize more extensive data sets to increase t
repeatability and reproducibility of radiomic
The limitation of the current study is the lim
of patient data. However the outcomes 3
current research should be verified using more
and multicenter dataset.

5. Conclusion

This study investigated the reproduciBility of numerous
radiomic features extracted from 18F-FDG PET images
of non-small cell lung cancer, adenocarcinoma against
various parameters: various gray-level including 16,
32, 64, 128, and 256; besides, different Interpolation
algorithms such as Linear, Cubic, and Nearest. Based
on our results, most of the radiomic features in this
study were extremely affected by GLD. The impact of
IA on PET radiomics feature is much lesser than GLD
but still is considerable. Hence, we recommend that
careful examination of radiomic features' reproducibility
is required before employing them in any clinical treatments.
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