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Abstract

Objective Hybrid PET/MRI presents many advantages in

comparison with its counterpart PET/CT in terms of

improved soft-tissue contrast, decrease in radiation expo-

sure, and truly simultaneous and multi-parametric imaging

capabilities. However, the lack of well-established meth-

odology for MR-based attenuation correction is hampering

further development and wider acceptance of this tech-

nology. We assess the impact of ignoring bone attenuation

and using different tissue classes for generation of the

attenuation map on the accuracy of attenuation correction

of PET data.

Methods This work was performed using simulation

studies based on the XCAT phantom and clinical input data.

For the latter, PET and CT images of patients were used as

input for the analytic simulation model using realistic

activity distributions where CT-based attenuation correction

was utilized as reference for comparison. For both phantom

and clinical studies, the reference attenuation map was

classified into various numbers of tissue classes to produce

three (air, soft tissue and lung), four (air, lungs, soft tissue

and cortical bones) and five (air, lungs, soft tissue, cortical

bones and spongeous bones) class attenuation maps.

Results The phantom studies demonstrated that ignoring

bone increases the relative error by up to 6.8 % in the body

and up to 31.0 % for bony regions. Likewise, the simulated

clinical studies showed that the mean relative error reached

15 % for lesions located in the body and 30.7 % for lesions

located in bones, when neglecting bones. These results

demonstrate an underestimation of about 30 % of tracer

uptake when neglecting bone, which in turn imposes sub-

stantial loss of quantitative accuracy for PET images pro-

duced by hybrid PET/MRI systems.

Conclusion Considering bones in the attenuation map

will considerably improve the accuracy of MR-guided

attenuation correction in hybrid PET/MR to enable quan-

titative PET imaging on hybrid PET/MR technologies.

Keywords PET/MRI � PET/CT � Attenuation correction �
Tissue classification � Quantification

Introduction

Over the past two decades, with the advent of correlative

imaging, the role of hybrid technologies has been enhanced

in diagnostic imaging. Clinical diagnosis, staging and
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assessment of response to therapy, which impact thera-

peutic options and patient management highly depend on

the information provided by imaging technologies. Both

structural (CT, MRI) and functional (PET, SPECT, fMRI,

DWI) imaging or a combination of both modalities are

used clinically and have proven to be useful for the deci-

sion-making process and for predicting outcome [1, 2]. The

widespread acceptance of PET/CT in clinical setting sub-

stantiated that the availability of spatially aligned com-

plementary information compensates for the shortcomings

of one modality with the strength of the other [3]. The

advantages of PET/CT over its mono-modal counterparts

and its role in diagnostic and therapeutic radiology planted

the seed of idea to combine PET molecular imaging with

high soft-tissue contrast MRI [4–6].

One of the most challenging issues of quantitative PET

imaging is attenuation of annihilation photons through their

pathway. Attenuation correction requires the availability of

the attenuation distribution which accounts for the distri-

bution of attenuating properties of biological tissues.

Besides the value of correlated structural information for

localization of metabolic abnormalities, the CT component

of PET/CT provides the attenuation map to feed the

attenuation correction process [7, 8]. On the other hand, the

derivation of the attenuation map from MR images is

inherently difficult since the MR signal correlates with

proton densities and tissue relaxation properties, rather than

with electron density and as such it is not directly related to

attenuation density [9].

Several techniques have been suggested to derive an

attenuation map from MR images [10]. Segmentation-

based methods generate an attenuation map by classifica-

tion of MR images into several classes followed by

assignment of predefined attenuation coefficients to various

tissue types. Since the segmentation of bones from MR

images acquired using conventional sequences is a difficult

task, segmentation-based approaches fail to include bones

in the attenuation map. A simplified method suitable for

clinical whole-body imaging suggested the classification of

whole-body images into only three classes (air, soft tissue

and lung), which has been implemented on commercial

PET/MRI scanners [11, 12]. Another technique considers a

4-class attenuation map (air, lungs, fat, and soft tissue),

which requires the acquisition of a 2-point Dixon MR

sequence [13]. The method consequently ignores bony

structures which are filled with soft-tissue-equivalent

medium. Few studies reported on the use of dedicated MR

sequence (e.g. ultrashort echo time, UTE) to label bony

structures that will likely play a pivotal role for the accu-

rate derivation of attenuation maps from MR images on

PET/MR systems [14–17].

The issue of using segmented attenuation maps and its

impact on quantitative accuracy has been addressed in a

number of studies in the realm of PET/CT [18, 19].

However, these studies still did not address the specificities

of PET/MR. Most MR-based attenuation-correction tech-

niques ignore bones owing to the inherent difficulties of

bone segmentation from conventional MR sequences.

Martinez-Moller et al. [13] recognized that ignoring bone

had an impact on lesion quantification, but this impact was

small for all lesions, even those located in the pelvic bone

and lumbar vertebrae. The largest standardized uptake

value (SUV) change (\15 % on average) were reported in

lesions located in the bone [11, 13, 20]. However, the

influence of bone could be higher in neurologic studies

because of the skull through which photons must pass

before reaching the detectors [21]. Most previous studies

reported that this bias does not affect the clinical inter-

pretation by experienced radiologists.

Concurrent with our group, recently Keereman et al.

[22] specifically focused on the error associated with the

use of different tissue classes when segmented attenuation

correction is applied by means of simulations using the

XCAT phantom. Although this study shed light on some

issues related to the impact of tissue classes, it has some

limitations because of the lack of realistic clinical studies.

As a matter of fact, the inclusion of clinical studies

strengthens the conclusions reached in more complex sit-

uations. In this work, we evaluate the impact of considering

hard bone and soft bone on the accuracy of MRAC of PET

data using simulation studies of the XCAT phantom and

clinical studies.

Materials and methods

Input data

XCAT phantom studies

The XCAT (4D extended cardiac-torso) phantom was used

to simulate 3D distributions of activity and attenuation

coefficients typical of whole-body PET/CT studies. This

phantom was specifically developed for realistic simulation

of human anatomy and physiology for nuclear medicine

studies [23, 24]. The phantom considers the motion asso-

ciated with both respiratory and cardiac motion. To isolate

the evaluation of MRAC from motion artifacts, we per-

formed a static simulation.

This phantom in fact resembles a database that accepts

an input file containing information pertaining to anatomic

height, weight, gender and the amount of activity for each

organ to create two sets of 3D images: (1) activity map

based on a predefined list of activities in the input file and

(2) the corresponding attenuation map for the specified

energy (511 keV for PET). We created a male subject
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having a weight of 85 kg and height of 190 cm. The

activity assigned to each region was devised using a

combination of clinical PET studies and data available in

the literature for whole-body FDG studies [25, 26]. The

matrix size of the phantom was 128 9 128 9 461 con-

taining voxels of size 4 9 4 9 4 mm3.

Clinical studies

Whole-body 18F-FDG PET/CT images of 10 patients were

acquired on the Biograph 16 PET/CT scanner (Siemens

Healthcare, Erlangen, Germany). PET images were

acquired with a slice thickness of 5 mm and pixel size

of 4.07 9 4.07 mm2 and dimensions of 168 9 168 9

300–400. A low-dose CT scan was performed on CT

subsystem of PET/CT for attenuation-correction purposes.

It should be noted that the clinical studies used in this work

lacked the presence of representative lesions in regions we

wanted to focus on (lesions located in different parts of

body). As such, our choice was to manually insert lesions

in these clinical PET studies according to guidelines pro-

vided by nuclear medicine physicians. This retrospective

study was approved by the local ethical committee and

informed consents were obtained.

Simulations

Simulation of lesions

Realistic lesions were manually placed inside the body or

bones paying special attention to mimic typical sizes and

uptake of tumors. The lesions consisted of elliptical ROIs

with three different diameters and realistic SUVs [27]. The

diameter was randomly determined in the range of

10–50 mm. Similarly, the location was randomly selected

inside the body as well as osseous regions (focusing on

osteo-metastatic lesions). The range of SUVs typical of

malignant disease was determined from the literature [28].

The SUV for each lesion was randomly chosen to be in the

range [2.5–5], indicating malignancy. The idea is to link

potential underestimation of SUV consequent to the use of

MR-guided attenuation correction with their clinical mis-

interpretation as benign. Over 380 lesions were inserted in

randomly selected bony regions, whereas over 800 lesions

were inserted in random locations in the body of the 10

clinical studies. It should be noted that simulated lesions

were inserted in both clinical and phantom studies.

PET data simulation and image reconstruction

Analytic simulation is a rapid technique for simulation of

PET data. Annihilation photons traverse tissues having

different attenuation coefficients and are attenuated through

their pathways. Compton scattering was not considered

since it was reported to have a minor impact on the results

for the purpose of this study [22]. The activity and attenu-

ation maps are used as input to the simulation process,

which consists of a forward projection operator taking into

account photon attenuation and the genuine geometry of the

PET scanner (Siemens Biograph 16 HireZ). Poisson noise

was added to the simulated projection data. The simulated

PET data were reconstructed using OSEM iterative algo-

rithm (8 subsets and 4 iterations) by means of the STIR

image reconstruction library [29]. It should be noted that for

clinical studies, the attenuation map is generated using the

bilinear energy mapping technique used on the majority of

commercial PET/CT scanners [30].

As discussed earlier, the main aim of this study is to

assess the effect of using different tissue classifications for

generation of the attenuation map. Therefore, the attenua-

tion map is classified into three tissue classes (air, lungs

and soft tissue), four tissue classes (air, lungs, soft tissue

and cortical bones) and five tissue classes (air, lungs, soft

tissue, cortical bones and spongeous bones). Image seg-

mentation was performed using the Insight Toolkit (ITK)

object-oriented image processing library [31]. The attenu-

ation map used as input to simulations was considered as

reference. The threshold used and assigned attenuation

coefficients are summarized in Table 1.

Figure 1 shows a flowchart of the simulation process.

The three main steps are explained in more detail as

follows:

1. Attenuated PET data are produced using the original

activity map and corresponding reference attenuation

map. For clinical studies, the actual PET image of each

patient was considered as activity map, whereas the

attenuation map was derived from its corresponding

CT image using bilinear energy mapping.

2. The attenuated emission sinogram resulting from

the former stage is corrected for attenuation using

the four attenuation maps (3-class, 4-class, 5-class and

reference).

3. The sinogram resulting from step #2 is reconstructed

using OSEM iterative reconstruction algorithm to

provide the corrected PET image.

4. The attenuation-corrected PET image is then com-

pared to the original image and the relative error

calculated.

Quantitative image analysis

The relative error for phantom studies was calculated

through voxel-by-voxel subtraction of the reconstructed

PET image from the reference image and dividing it by the

latter using the following equation:
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Relative error ¼ Measured activity� Original activity

Original activity
� 100 %:

ð1Þ

It can be deduced from Eq. (1) that a negative relative error

demonstrates that the corrected image underestimates the

initial activity, whereas a positive relative error demon-

strates that the corrected image overestimates the original

activity map.

The correlation coefficient is a statistical parameter that

shows the linear dependency of two groups of samples. We

calculate the correlation coefficient between PET images

obtained using the different attenuation-correction methods

and the reference image. When the two samples are line-

arly correlated, their correlation coefficient approaches 1.

Attenuation correction and image reconstruction were

performed using the STIR library [29]. Spherical ROIs cor-

responding to the location of the simulated lesions were out-

lined to calculate the SUV for each ROI using the formula:

SUVmean=max ¼
ðactivity concentration in ROIÞ mean=max

Injected activity=body weight
:

ð2Þ

Since SUVmax is very sensitive to noise, the maximum value

for each ROI was selected after averaging the considered

voxel with its 26 neighbors. Relative errormean=max which

directly reflects the dispersion of SUVmean=max from the

original SUV in PET images is calculated using the

following formula:

Relative errormean=max ¼
SUVmean=max � Original SUV

Original SUV
� 100 %:

ð3Þ

It should be noted that a negative relative errormean=max

reflects an underestimation of SUVmean=max, whereas a

positive relative errormean=max reflects an overestimation of

SUVmean=max. In order to assess the effect of using different

attenuation maps on clinical interpretation, it was hypoth-

esized that lesions with SUVmax smaller than 2 (while their

original SUVmax was higher than 2.5) can be considered as

benign. The total number of benign lesions for each

attenuation-correction method was obtained.

The results of the comparative analysis are shown using

box and whisker plots. In these plots, the box shows the

median (horizontal line), whereas the lower (Q1) and upper

quartiles (Q3) define the 25th and 75th percentiles. The plus

sign in the plots indicates the outliers. Outliers in the plot

include dubious results which are beyond of 1.5 times the

inter-quartile range (Q3–Q1). The whiskers show the max-

imum and minimum of population after elimination of out-

liers. The notches display the variability of the median

between samples. The width of a notch is computed so that

the box plots whose notches do not overlap have different

medians at the 5 % significance level. The significance level

is based on a normal distribution assumption, but compari-

sons of medians are reasonably robust for other distributions.

Comparing box plot medians is similar to a visual hypothesis

test, analogous to the t test used for means.

Results

Figure 2 shows the relative error maps (image depicting

the relative error voxel-by-voxel) where voxel values

indicate the percentage of relative errors (Eq. 1). The

results seem to indicate that neglecting bone causes a sig-

nificant error. Figure 3 shows the box and whisker plots

reflecting statistical analysis of the relative error for various

regions of the XCAT phantom. The samples shown in

Fig. 3a were selected from various parts of the body.

Similarly, samples selected from bones and bone marrow

are shown in Fig. 3b.

Table 1 Thresholds used for segmentation of the attenuation map and CT image into different tissue classes together with the assigned linear

attenuation coefficient

Class 2 Class 3 Class 4 Class 5

XCAT l-map

Three-class I B 0.096 / 0.0286 0.096 \ I / 0.096 – –

Four-class I B 0.096 / 0.0286 0.096 \ I B 0.134 / 0.096 0.134 \ I / 0.134 –

Five-class I B 0.096 / 0.0286 0.096 \ I B 0.101 / 0.096 0.101 \ I B 0.134 / 0.101 0.134 \ I / 0.134

CT image

Three-class I B -200 / 0.0286 -200 \ I / 0.096 – –

Four-class I B -200 / 0.0286 -200 \ I B 300 / 0.096 300 \ I / 0.134 –

Five-class I B -200 / 0.0286 -200 \ I B 100 / 0.096 100 \ I B 300 / 0.101 300 \ I / 0.134

One class corresponds to image background (air) is not mentioned here

The following pattern was used. XCAT l-maps: lower thr(cm-1) \ I \ upper thr(cm-1) / assigned value(cm-1). CT images: lower thr

(HU) \ I \ upper thr (HU) / assigned value (cm-1)
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The reconstructed images of the XCAT phantom cor-

rected for attenuation using segmented and reference

attenuation maps were compared with the phantom’s ori-

ginal activity distribution. The average error (Relative

errormean) for each lesion was calculated for various organs

and is illustrated in Fig. 4. Figure 5 plots the correlation

coefficients between clinical PET images obtained using

the various attenuation-correction techniques and the ori-

ginal images. The closer the correlation coefficient to

identity, the better the correlation between the ground truth

and the corresponding attenuation-correction procedure. It

was observed that for all simulated phantoms and clinical

Fig. 1 Flowchart of the overall simulation procedure used for phantom and clinical studies

156 Ann Nucl Med (2013) 27:152–162

123



studies, increasing the number of classes will definitely

increase the accuracy of attenuation correction. Statistical

analysis proved that there is statistically significant differ-

ence between the attenuation-correction techniques.

Figure 6a, b shows box and whisker plots for

relative errormean and relative errormax for ROI-based analysis

of about 386 lesions located in bones simulating osteo-meta-

static lesions for 10 patients. It can be seen that the bilinear

CT-based attenuation correction underestimates SUVmax by

13.4 % and slightly overestimates (*0.4 %) SUVmean. How-

ever, the attenuation-correction methods using 3-class, 4-class

and 5-class classified attenuation maps largely underestimate

both SUVmean and SUVmax. Figure 6c, d shows

relative errormean and relative errormax for lesions in the body

excluding bones. These lesions were simulated to contain equal

SUVmean and SUVmax randomly from 2 up to 5. Over 800

lesions were located in 10 patients. Figure 6c, d indicates that

the bilinear CT-based attenuation-correction technique causes

3.6 % underestimation of SUVmax and 6.3 % underestimation

of SUVmean. However, attenuation-correction methods using

3-class, 4-class and 5-class attenuation maps demonstrate lar-

ger underestimations of both SUVmax and SUVmean.

Fig. 2 Relative error maps

resulting from attenuation

correction of phantom (a–d) and

clinical (e–h) studies.

Attenuation correction uses:

three-class attenuation map

(a, e), four-class attenuation

map (b, f), five-class attenuation

map (c, g), reference attenuation

map (d) for the phantom study,

and bilinear attenuation map

(h) for the clinical study

Ann Nucl Med (2013) 27:152–162 157
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Table 2 summarizes the number of lesions inside bones

or the body classified as benign (SUVmax \ 2) while their

initial SUVmax was higher than 2.5. Lesions with different

uptakes were counted separately. The percentage of mis-

interpreted lesions is also reported.

Discussion

The main objective of this work is to quantify the impact of

using different number of tissue classes on the accuracy of

MR-guided attenuation correction of PET data. This

assessment consisted of simulated phantoms using the

XCAT model and clinical studies. The relative error

depicted in Fig. 3 as box and whisker plot was calculated

voxel by voxel. The large number of voxels and their

different characteristics explains the wide range of the

relative error distribution. The wide boxes and whiskers

make the comparison of the different attenuation-correc-

tion methods difficult. On the other hand, owing to the

large number of voxels, the margin of statistical insignifi-

cance (confidence interval) falls down. This enables direct

comparison of different techniques. The phantom study

substantiates the hypothesis that the higher the number of

tissue classes in the attenuation map, the more the recov-

ered activity approaches the original activity for lesions

located in the body (Fig. 3a). When using the reference

attenuation map for AC, the median of the relative error for

all voxels of the body is equal to 1.34 ± 0.04 % (Fig. 3a).

The value 0.04 % is the confidence interval for a signifi-

cance level of 95 %. The use of 5-class, 4-class and 3-class

attenuation maps resulted in progressively increasing

underestimation of tracer uptake in attenuation-corrected

PET images of the XCAT phantom, respectively.

Figure 3b shows another sight of using different atten-

uation maps. The evaluation of the impact of a different

number of tissue classes for generation of the attenuation

map around bones and bone marrows highlights the fact

that neglecting bone will lead to a larger underestimation

of tracer uptake in PET images. Attenuation correction

using a 3-class attenuation map, which ignores all bones

and harder anatomical structures, underestimates tracer

uptake by 31.05 ± 0.05 % in bones and their neighbor-

hoods. Other methods that consider bone result in smaller

relative errors (under 1 %) in bony structures.

Figure 3 corroborates the fact that the relative error for

the whole-body increases significantly as the number of

classes decreases. On the other hand, ignoring bones in the

3-class attenuation map causes serious errors in bony

structures, whereas taking bone into account in the deri-

vation of the attenuation map reduces the relative error.

Figure 4 demonstrates that the SUV for lesions located

inside bones is largely underestimated by about 25 % for

Fig. 3 Box and whisker plots illustrating the statistical analysis of the

error image for the XCAT phantom: a samples selected from body,

b samples selected from bones and bone marrow

Fig. 4 Average

relative errormean for lesions

inside various parts of the

XCAT phantom

158 Ann Nucl Med (2013) 27:152–162
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Fig. 6 Box and whisker plots illustrating relative errormean and relative errormax calculated for simulated lesions in bones (a, b) and in the body

(c, d) for all patients

Table 2 Impact of using different tissue classes in the attenuation map on lesions’ uptake

Reference SUVmax Number of lesions with SUVmax \ 2 Total Percentage (%) of lesions classified as benign (SUVmax \ 2)

3-Class 4-Class 5-Class Bilinear 3-Class 4-Class 5-Class Bilinear

Bone 2.5–3 36 8 6 1 64 56.2 12.5 9.4 1.6

3–4 55 15 10 5 167 32.9 9.0 6.0 3.0

4–5 35 10 5 1 149 23.5 6.7 3.4 0.7

[ 5 2 1 1 0 6 33.3 16.7 16.7 0.0

Body 2.5–3 66 17 13 3 140 47.14 12.1 9.3 2.1

3–4 9 7 4 0 352 2.56 2.0 1.1 0.0

4–5 0 0 0 0 362 0.00 0.0 0.0 0.0

[5 0 0 0 0 19 0.00 0.0 0.0 0.0

All simulated lesions had an initial SUVmax [2.5. Lesions with SUVmax \2 after attenuation correction were classified as benign

Fig. 5 Correlation coefficients

calculated through voxel-by-

voxel statistical analysis of the

original and corrected images

for the XCAT phantom and 10

clinical studies considered

Ann Nucl Med (2013) 27:152–162 159
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the 3-class attenuation map. The difference between PET

images corrected for attenuation using the reference

attenuation map and the original images is likely due to

errors associated with organ boundaries.

The correlation coefficient between PET images cor-

rected for attenuation correction using the different and

original image is another relevant parameter for compara-

tive analysis (Fig. 5). As the number of classes in the

attenuation map increases, the correlation coefficient

becomes closer to one confirming the hypothesis that

increasing the number of classes will improve the accuracy

of attenuation correction. Statistical hypothesis testing was

carried out to assess whether two correlations have dif-

ferent strengths. Since the number of samples was rela-

tively high, all correlation coefficients are different with a

significance level of 99 %. It should be noted that we

assumed that all samples are normally distributed for sta-

tistical testing (the normality of samples was verified using

Chi-square test).

Relative errormean=max for SUVmean/max index is another

parameter for assessment of different attenuation-correc-

tion techniques used for clinical simulation studies. It

should be mentioned that Relative errormax calculated from

SUVmax is highly sensitive to statistical noise since it

reflects the value of only one voxel. The latter is, however,

less dependent on the shape, size and location of the ROI.

Notwithstanding, SUVmax suffers from inferior reproduc-

ibility in comparison with SUVmean [32].

Figure 6a, b show relative errormean and relative errormax

calculated over 386 ROIs for the 10 patients included in this

study. Both metrics support the fact that a higher number of

classes improves the accuracy of the attenuation-correction

procedure. This is in agreement with the previous phantom

study. However, a close look at the results reported in

Table 3 indicates that relative errormax (for simulated osteo-

metastatic lesions) are not significantly different with a

significance level of 95 % when using 4-class and 5-class

attenuation maps. This is in line with observations made for

the phantom study (Fig. 3b). The reason behind is that the

5-class and 4-class attenuation maps are slightly different in

their contents since the 4-class attenuation map considers

only hard bones as an individual class, whereas a 5-class

attenuation map also considers soft bones.

Figure 6c, d show the results for simulated lesions in the

body. Similar behavior is observed when increasing the

number of classes in terms of reducing relative errormean

and relative errormax. Table 3 shows the median of

relative errormean and relative errormax for each group

of ROIs along with their confidence interval for 95 % con-

fidence level. There is a small difference between

relative errormean and relative errormax when using the var-

ious attenuation-correction techniques using 4-class and

5-class attenuation maps. Consequently, although consid-

ering soft bones as a distinct class in the attenuation map

slightly improves the accuracy of attenuation correction, it is

not as vital as including hard bones as a separate class. This

is further demonstrated in Table 2 where it can be observed

that ignoring hard bones in the attenuation map results in a

larger rate of misinterpretations than ignoring soft bones.

For clinical studies, considering bone in osteo-metastatic

lesions decreases relative errormean and relative errormax by

17.19 ± 2.2 % and 8.58 ± 0.4 %, respectively, when

comparing 3-class with 4-class attenuation maps. For lesions

located in the body, relative errormean and relative errormax

decrease by 2.9 and 3 %, respectively.

It was observed for both phantom and clinical simu-

lation studies, that the actual or reference attenuation

map (bilinear conversion curve) produces small errors

(Figs. 4, 6). In this case, since the reference images were

forward projected considering photon attenuation and

then attenuation corrected using the same attenuation

map, error-free reconstruction is expected. However, in

practice the reconstruction process suffers from numeri-

cal instability especially in sharp boundaries which leads

to such errors.

Different values for SUV underestimation in bone

lesions have been reported in the literature ranging between

Table 3 Summary of median and corresponding 95 % confidence

interval calculated over all simulated lesions in bones and the body of

the patients when using different attenuation-correction procedures

AC

technique

Notch-

low (%)

Median

(%)

Notch-

high

(%)

Confidence

interval (%)

Body

Errormean 3-class -15.83 -15.37 -14.90 0.93

4-class -12.91 -12.49 -12.07 0.84

5-class -12.34 -11.92 -11.51 0.83

Bilinear -6.57 -6.34 -6.11 0.46

Errormax 3-class -14.78 -13.01 -11.24 3.54

4-class -11.78 -9.99 -8.19 3.59

5-class -11.23 -9.41 -7.60 3.62

Bilinear -5.31 -3.63 -1.95 3.35

Bones

Errormean 3-class -28.36 -27.27 -26.19 2.17

4-class -11.17 -10.41 -9.65 1.52

5-class -7.20 -6.44 -5.69 1.52

Bilinear 0.17 0.35 0.54 0.37

Errormax 3-class -30.72 -29.34 -27.97 2.76

4-class -22.14 -20.90 -19.65 2.49

5-class -20.50 -19.34 -18.18 2.32

Bilinear -14.62 -13.43 -12.25 2.36

160 Ann Nucl Med (2013) 27:152–162

123



5 and 15 % [11, 13, 33] and going up to 23 % [34]. Sim-

ulation studies using the XCAT phantom reported biases of

up to 17.5 % [22], whereas our assessment led to a bias of

28.36 ± 1.08 % for SUVmean and 30.72 ± 1.38 % for

SUVmax [35]. Our results suggest higher relative errors

compared to previous works. One possible reason could be

the way the lesions were simulated. Indeed, the lesions

were inserted inside bones and none of them was partially

outside the bones. The size of lesions was also relatively

small which can be another reason for the large deviations.

According to nuclear medicine physicians, such under-

estimation might impact their interpretation having as

consequence mis-staging of tumors with low SUV in some

cases, while there is potential of misjudgment when

assessing response to treatment for tumors with relatively

high SUV.

Table 2 shows that for bony tumors, over 50 % of the

lesions having an initial uptake from 2.5 to 3 could be

interpreted as benign lesions when using a 3-class attenu-

ation map. For lesions with higher uptake, the percentage

of misinterpretation falls down to 33 % (3 \ SUV \ 4)

and 23 % (4 \ SUV \ 5). The number of misinterpreted

lesions in the body with an SUV [ 3 drastically falls down

owing to the fact that the error for body lesions is lower in

comparison with bony lesions.

The use of a sharp SUV cut-off threshold to discriminate

between benign and malignant lesions has been widely

discussed in the literature and still remains a matter of

debate. Different ranges of SUVmax for various tumor

entities have been proposed [36–38]. Owing to the vari-

ability in PET scanner design and performance parameters,

acquisition and processing protocols and study populations,

it is impossible to draw an unambiguous conclusion about a

common SUV cut-off threshold. A recent study [39] has

shown that the range of SUVmax for benign tumors slightly

overlaps with that for malignant tumors. As such, our

approach bears some inherent limitations in this respect.

According to our previous experience [8, 40–42], we

believe that a study design involving the use of human

observers with a ranking procedure to assess the impact of

various attenuation-correction strategies on visual quality

of PET images is not the best strategy given the small

visual changes noticeable on clinical images. Therefore, we

relied on quantitative changes in PET images based on the

hypothesis that underestimations of SUV resulting from the

use of MR-guided attenuation correction could result in

misinterpretations of malignant lesions as benign.

Conclusion

We evaluated the impact of using different number of

tissue classes in MR segmentation-based attenuation

correction in PET/MRI. We particularly focused on the

controversial effect of neglecting bone and the improve-

ment brought by considering hard and soft bones. Overall,

it has been shown that considering bone improves the

accuracy of MR-guided attenuation correction. The quan-

titative assessment revealed a 50 % underestimation of

SUVs ranging between 2.5 and 3 owing to ignoring bone,

which might cause misinterpretation of bone tumor staging.

Our study substantiates that the choice of the number of

tissue classes has a significant impact on the clinical

interpretation of osteo-metastatic lesions and needs to be

optimized for hybrid PET/MR technologies.
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