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Abstract

Purpose: The aim of this study is to introduce a fully automatic and reproducible short echo-time
(STE) magnetic resonance imaging (MRI) segmentation approach for MR-based attenuation
correction of positron emission tomography (PET) data in head region.

Procedures: Single STE-MR imaging was followed by generating attenuation correction maps
(u-maps) through exploiting an automated clustering-based level-set segmentation approach to
classify head images into three regions of cortical bone, air, and soft tissue. Quantitative
assessment was performed by comparing the STE-derived region classes with the correspond-
ing regions extracted from X-ray computed tomography (CT) images.

Results: The proposed segmentation method returned accuracy and specificity values of over
90 % for cortical bone, air, and soft tissue regions. The MR- and CT-derived py-maps were
compared by quantitative histogram analysis.

Conclusions: The results suggest that the proposed automated segmentation approach can reliably
discriminate bony structures from the proximal air and soft tissue in single STE-MR images, which is
suitable for generating MR-based p-maps for attenuation correction of PET data.
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Introduction

Attenuation correction is a mandatory step for exploiting
both qualitative and quantitative capabilities of positron
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emission tomography (PET) images and to achieve desirable
diagnostic accuracy [1]. In this context, magnetic resonance
imaging (MRI) has recently emerged as a potential substitute
for computed tomography (CT) imaging in providing
accurate quantitative attenuation correction map (u-map) of
radiotracer concentration, due to the significant advantages it
offers over CT imaging [2, 3]. As opposed to conventionally
used CT images for generating PET attenuation correction,
MRI delivers high-resolution and high-contrast images [4].
Additionally, the metabolic information provided by PET


http://crossmark.crossref.org/dialog/?doi=10.1007/s11307-016-0990-5&domain=pdf
http://dx.doi.org/10.1007/s11307-016-0990-5

A.F. Kazerooni et al.: Single STE-MRI for MR-Based Attenuation Correction of PET Data

could be complemented by additional functional MRI
techniques, e.g., spectroscopy, perfusion, and diffusion,
which can be carried out without imposing any radiation
dose and in the same imaging session with routine MRI
[4, 5].

Incorporating MRI with PET scanning has now become a
reality in hybrid PET/MR scanners, in which simultaneous
image acquisition can reduce the overall acquisition time.
Hybrid PET/MRI allow for establishing correlations among
MRI-based morphological and functional information with
PET-based pathological and quantitative information on
metabolic aspects of tissue function [6].

Nonetheless, one of the main challenges currently being
faced in PET/MRI systems is the difficulty to directly
generate p-maps at 511 keV by the corresponding MRI;
mostly because, there are no direct interrelationships
between MRI intensities and attenuation coefficients of the
tissue [6, 7]. Nonetheless, an issue with MRI-based
attenuation correction (MRAC) is that in conventional
MRI, cortical bone structures are indistinguishable from
proximal air cavities, e.g., in facial sinuses in the head
images [8]. Since air and bone manifest different attenuation
properties, misclassification of bony structures as air or soft
tissue classes could lead to errors as large as 20 % in
estimation of radiotracer concentration [7, 9, 10]. Hence,
accurate tissue segmentation becomes critically important in
deriving quantitative PET images.

To reliably create MRI-derived p-maps at 511 keV,
template- [11, 12], segmentation- [8, 13], and sequence-
based [7, 13, 14] methods have been proposed. The
template-based approaches predict the attenuation coeffi-
cients on a continuous scale, usually by either registering a
CT atlas or PET transmission scan template or through
applying machine learning techniques [15, 16]. But, these
approaches are time-consuming, cannot perform optimally in
presence of pathologies, and their robustness to anatomical
variability among different subjects must be carefully
evaluated. In other words, these techniques do not account
for inter-patient variability. The segmentation-based
methods that works purely based on MR images, acquired
by properly-designed pulse sequences such as ultra-short
echo-time (UTE) or short echo-time (STE) techniques, are
generally simpler to implement, computationally efficient,
and relatively robust.

While UTE-MRI that detects the bone signal and thus
facilitates discrimination of cortical bone from air, has
received attention for MRAC of PET images in the past
few years [13, 17], it has a number of limitations which
restrict its application in routine clinical imaging: UTE-MRI
is time-consuming, requires two sequential imaging acqui-
sitions, and yet delineating borders of air, cortical bone, and
soft tissue is a challenge [6]. Recently, we investigated the
feasibility of STE-MRI, a widely available and cost-effective
sequence, in the head area as an alternative to UTE-MRI and
showed its potential in differentiating cortical bone from air
[14, 18].

STE-MRI provides sufficient cortical bone signal for its
differentiation from air but appears with discontinuous
boundaries, and this complicates the performances of
intensity-based segmentation techniques, such as
thresholding [18] or fuzzy C-means [14] in discontinuities.
In such occasions, manipulations with morphological oper-
ators are required to attach the missing parts for generating
homogeneous cortical bone regions, and therefore, the
ultimate approach becomes semi-automated and dependent
on the judgment of the algorithm developer, which is not
reproducible. The presence of intensity inhomogeneity
artifacts can further degrade the performances of such
algorithms, as the signal intensities become interrelated in
adjacent pixels while the assumption of aforementioned
segmentation techniques is independent of image pixels.

Our previous work incorporated combination of STE and
Dixon imaging for discrimination of tissue classes, which
requires additional imaging. In the present study, we
intended to design and implement an efficient segmentation
scheme employing fully automatic and reproducible level-set
segmentation approach on single STE-MRI, to reliably
discriminate the cortical bone from soft tissue and air in
the head region.

Materials and Methods

Image Acquisition

Study approval was obtained from the Medical Ethics Committee
of Tehran University of Medical Sciences (License number 1432),
and the subjects were included if they provided written informed
consent. MR image acquisitions of five volunteers were performed
on a 1.5 T MAGNETOM Avanto system (Siemens Medical
Solutions, Erlangen, Germany). Short TE (STE)-MR images were
acquired using FLASH 3D pulse sequence with the following
parameters (summarized in Table 1): TE/TR of 1.13/12 ms, flip
angle of 18°, and voxel size of 1.2 x 1.2 x2 mm°.

To evaluate the accuracy of the generated MR-based p-maps,
CT-based p-maps were calculated in 511 keV as references of
assessment. Ultra-low-dose CT (ULDCT) images of the same
volunteers were acquired on the CT module of Discovery 690 VCT
PET/CT scanner (GE Healthcare Technologies, WI, USA) with no
gantry tilt, tube voltage of 80 kVp and tube current of 10 mA, with
0.5 s rotation time. The voxel size for CT images was 0.41 X 0.41 x
5 mm°>. The ULDCT protocol, approved by the Ethical Committee
of the local institution, was carried out to ensure the total effective
dose received by normal volunteers to be in the safe range, in

Table 1. Short TE-MR imaging parameters

Parameter Definition 15T

TE (ms) Time of echo 1.1

TR (ms) Repetition time 12

Flip angle 18°

Voxel size (mm) 1.2x1.2%x2
FOV (mm?) Field of view 320 % 320
Duration (min) Total acquisition time 7:42

The indices within the parantheses indicate the SI units of each parameter.



A.F. Kazerooni et al.: Single STE-MRI for MR-Based Attenuation Correction of PET Data

compatibility with the International Commission on Radiation
Protection (ICRP) report. The total effective dose in this protocol
was about 0.4 % of that of a typical CT examination [14].

MR-Based u-Map Generation

The three-class p-maps including air, bone, and soft tissue were
derived from STE-MR images in stepwise manner, as summarized
in Fig. 1 and explained in details below. All procedures were
implemented in MATLAB 2013a (MathWoks, Natick, MA).

STE-MR Image Pre-processing

MR images were initially masked by applying “Chan-Vese” active
contour segmentation approach to isolate unnecessary background
information from head regions. In STE-MR images, the unneces-
sary background information includes background noise. This pre-
processing step is mandatory for accurate convergence of level-set
contours. Afterwards, the images were denoised employing
anisotropic diffusion filtering with optimized parameters to elimi-
nate noise effects while maintaining spatial resolution and edge
information.

Joint Intensity Inhomogeneity Correction and
Segmentation Framework

Intensity inhomogeneity is a corrupting artifact, which occurs in
MR images as a result of multiple factors, such as non-uniformity
of BO or B1 magnetic fields, or patient anatomy and position [19].
This artifact could significantly complicate the performance of
image processing algorithms; particularly, segmentation results
become deteriorated where intensity inhomogeneity induces over-
lapping intensity ranges in the regions to be segmented. Inhomo-
geneity correction becomes essentially critical in STE-MR image
segmentation, in the sense that in these images, air/bone interfaces

in the nasal areas produce susceptibility or inhomogeneity artifact,
and consequently accurate separation of these two tissues becomes
a challenge.

Spatial intensity inhomogeneity correction from MR images is
difficult, as it varies with acquisition parameters, between different
subjects and even among various slices of the same subject. Most
of the widely used segmentation approaches in medical applications
rely on the assumption of image homogeneity [20, 21], which
compromises application of these methods in clinical MR image
segmentation.

To overcome this issue, here, we exploit a three-phase region-
based local level-set segmentation approach proposed and imple-
mented by Li et al. [22] which incorporates intensity inhomogene-
ity correction with the level-set algorithm. This technique is
inherited from the idea that while an accurate segmentation
outcome is dependent on inhomogeneity removal, an efficient
segmentation algorithm could be employed interactively for
estimating the intensity inhomogeneity artifact during segmentation
procedure [23-25]. In this technique, k-means clustering is applied
to estimate the intensity properties of each region for bias field
correction simultaneously with the level-set segmentation. The
details of this level-set implementation can be found in [22] and
provided in Supplementary Material.

This algorithm incorporates both intensity and spatial informa-
tion to define continuous boundaries. In order to estimate the
clusters over the iterations of level-set evolution, a window or
kernel function is applied, which constructs a local clustering
criterion as a basis for level-set formulation. The choice of the
kernel function is flexible. Here, the Gaussian kernel is employed
as the optimal function, which can be specified by a standard
deviation of “¢” and a neighborhood radius of “p” (Eq. 1).

1 2 2

2 |t /20

K(u) — ae | .l, fOI"LllSp (1)
0, otherwise

where a is a normalization factor, in a way that |K(u)=1. The
neighborhood radius is specified with p =40+ 1.

STE-MR Image
Acquisition

—{

Level-Set Segmentation & Region
Properties Analysis

Air Class

p-map

Bone Class

Soft-Tissue Class Segmented Image

‘ nx Hu-map Generation]

Fig. 1 The overall segmentation and p-map construction procedure: the STE-MR image is segmented using clustering-based
level-set algorithm along with intensity inhomogeneity correction, followed by some region property analysis methods to
remove the eye parts, and finally filtering and down-sampling for y-map generation.
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For accurate delineation of the air, bone, and soft tissue, the
algorithm is applied in two phases:(Phase I)Large amount of o is
selected for the separation of air region;; (Phase 1I)Small amount of
o is chosen for isolation of bone from soft tissue regions, excluding
the air class from phase I.

As the method is region and intensity-based, eye regions with
image intensities close to bone signal intensity were misclassified
in the bone class. To ecliminate these regions, we applied a
morphological operator, called shape factor or circularity as a
measure of compactness of a shape (Eq. 2):

4rA

Circularity = 3 (2)

where A and P respectively denote the shape area and perimeter
[26]. No additional morphological operations were applied for
dilating the bone class.

Derivation of MR-Based u-Maps

After completion of STE-MR image segmentation for creation of
three image classes, including air, bone, and soft tissue, relevant
attenuation coefficients in 511 keV were assigned to each of the
classes, based on ICRU Report no. 44 (http://www.icru.org/home/
reports/tissue-substitutes-in-radiation-dosimetry-and-measurement-
report-44). Accordingly, the bone, soft tissue, and air structures
were respectively assigned the values of 0.174, 0.99, and 0.00
(em™"). To generate the p-maps compatible with resolution of
Discovery 690 PET/CT scanners (GE Healthcare Technologies,
WI, USA), the resulting images were down-sampled to 128 x 128
matrix size and smoothed using a Gaussian filter with a full-width
at half-maximum of 6 mm.

CT-Based u-Map Generation

CT Image Pre-processingThe acquired CT images were masked
using “Chan-Vese” active contour model, like MR images, to
exclude head region from unwanted areas, including background
noise and the bed which need to be excluded to reach accurate
registration with STE-MR images and precise segmentation.
Afterwards, CT images were co-registered with their corresponding
STE-MR images using FLIRT 3D registration method package
(http:/fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT), with affine transforma-
tion model and normalized mutual information similarity measure.

CT Image Segmentation

As it is apparent from the comparison of the voxel sizes of STE-
MR and CT images, the slice thickness of CT images is larger than
that of STE-MR images, while axial spatial resolution of STE-MR
images is lower than CT images. Accordingly and considering
reduced sensitivity of ULDCT images, the commonly used
threshold-based segmentation methods [14, 27] do not return
reliable discrimination of air/bone/soft tissue classes. Therefore,
to overcome the limitations imposed by low-dose CT protocol,
we applied a fuzzy C-means clustering approach, as proposed in
[28, 29], to differentiate three classes of air, bone, and soft tissue
regions (Fig. 2a).

Validation

For each patient, 20 slices with three slices apart were analyzed and
evaluated. We assessed the accuracy of the proposed combined
STE-MR imaging and automatic segmentation approach by
comparing the segmentation results with CT images of the same
subject. Evaluation was performed for each of the region classes,
i.e., air, bone, and soft tissue, by considering CT-based segmenta-
tion as the gold standard. Voxel-wise comparison of MR- and CT-
based segmentation results was performed and true positive (TP),
true negative (TN), false positive (FP), and false negative (FN)
values were calculated to generate quantitative evaluation metrics,
namely sensitivity, specificity, and accuracy. The formulations of
these metrics can be found elsewhere [14].

Further assessment of MR- and CT-derived p-maps was carried
out by computing their histograms and calculating several
histogram features representing different properties of the generated
maps. These parameters include mean image intensity, standard
deviation of image histogram representing average contrast,
normalized variance denoting image smoothness, third moment
representing skewness, image energy indicating image uniformity,
and image entropy representing randomness of image pixels
(Table 2).

Results

We have applied our proposed framework on STE-MR
images of five normal volunteers. By trial and error, for air
segmentation, the parameter ¢ in Eq. 1 is set to 8, and for
bone and soft tissue segmentation it is set to 1.5. Fig. 2
illustrates the results of joint clustering-based level-set
segmentation and intensity inhomogeneity correction on
three sample slices of a normal subject. The slices are
chosen from lower third (including sinus area and through
the eye sockets), middle third (including part of sinus area
and eye sockets), and upper third of the whole-brain STE-
MR images, to assess the capability of the algorithm in
handling segmentation of several brain regions. The lower
third slice contains complex bone structures, which is a
challenging region for most of the image segmentation
algorithms. For visual inspection of the segmentation results,
in Fig. 2, CT images are presented in column a where their
corresponding segmented images are illustrated in column c.
Column b depicts the relative STE-MR images with
segmented results indicated in column d. For segmented
images in columns ¢ and d, soft tissue is coded with gray,
cortical bone with white, and air with black. The MR-
derived p-map of the corresponding slice can be observed in
column e.

Quantitative assessment of segmentation outcomes was
carried out on a voxel-by-voxel basis between segmented
STE-MR and CT images. The quantitative evaluation
outcome in terms of sensitivity, specificity, and accuracy
metrics for the three classes of cortical bone, air, and soft
tissue regions is summarized in Table 3. A large majority of
voxels were correctly attributed to their expected tissue
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Fig. 2 lllustration of the results of the proposed segmentation approach on three sample slices of STE-MR images of a normal
subject: (first row) lower third, (second row) middle third, and (last row) upper third slices of a whole-brain image. a CT images; b
corresponding STE-MR images; ¢ segmented STE-MR images classified into three different regions: air (black), soft tissue
(gray), and bone (white); d segmented CT images classified into the aforementioned three regions; and e the derived MR-based

h-maps.

class: 90.71 % accuracy for cortical bone, 95.72 % for soft
tissue, and 90 % for air.

In Figs. 3 and 4, the differences of segmentation results
obtained by CT and STE-MR images and CT- and MR-
derived p-maps are respectively represented. These maps are
indicated in color-coded format to provide visual compari-
son of the classified regions. Average differences between
the segmented STE-MR images with respect to the seg-
mented CT images were 0.008 +0.024 cm™' and among the
generated MR- and CT-derived p-maps were 0.003 +
0.005 cm™".

Further assessment of classification accuracy was per-
formed by computing the number of voxels in each of the
three classes of cortical bone, air, and soft tissue areas
assigned to the correct or incorrect classes. Fig. 5 illustrates
the true/false assignments of average number of voxels to
each of the cortical bone, air, and soft tissue classes.

Additionally, a new evaluation method was employed for
investigating the similarities of CT- and MR-based p-maps.

Table 2. Definitions of histogram features

Feature Definition

Mean Average of image histogram

Contrast Standard deviation of image histogram, i.e.,
dispersion of the histogram

Smoothness Normalized variance of image histogram

Skewness Third moment of image histogram, a measure
of asymmetry of the probability distribution

Uniformity Image energy

Entropy Irregularities of image pixels

This was performed by accumulating the image intensities
within each of CT- or MR-based p-maps derived from the
three sample slices represented in Fig. 2. CT- and MR-
derived histograms were calculated to more closely probe
the similarities of the generated p-maps. Statistical
histogram-derived features quantitatively represent probabil-
ity distribution of the image intensities. As indicated in
Fig. 6, the histograms of CT- and MR-derived p-maps are
very similar. This was further approved by comparing the
quantities of histogram features (Table 4).

Discussion

The presented work was implemented by adopting the idea
of incorporating single STE-MR images of the brain with an
automatic clustering-based level-set segmentation technique
with simultaneous intensity inhomogeneity correction [22].
As proposed in [14], STE-MR images with the devised
protocol can provide sufficient signal-to-noise ratio (SNR) to
detect bone signal. By exploiting optimal clinically feasible
short echo-time MR acquisition followed by an advanced
image segmentation, visualization of cortical bone, and its
differentiation from air regions becomes possible. The image
processing steps make distinctive contrasts between soft, air,
and bone regions. This is important in the context of
attenuation correction of PET images, as MR images offer
desirable properties such as superb soft tissue contrast, non-
ionized acquisition strategy, and multi-parametric imaging
within a single acquisition session. Therefore, the capability
of detecting cortical bone and its accurate differentiation
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Table 3. Quantitative evaluation results of classifying STE-MR images into three classes of cortical bone, air, and soft tissue, by comparing the MR-
segmented regions with the corresponding CT-segmented regions. The evaluation is denoted in terms of sensitivity, specificity, and accuracy

Cortical bone Air Soft tissue

Sens. (%) Spec. (%) Acc. (%) Sens. (%) Spec. (%) Acc. (%) Sens. (%) Spec. (%) Acc. (%)
74.52 94.54 90.71 87.87 92.15 90.09 93.59 97.02 95.72
from air regions can further convert MRI as the imaging In this work, automatic clustering-based level-set seg-
method of choice in the context of PET attenuation  mentation technique incorporated with intensity inhomoge-
correction. neity correction on single STE-MRI was applied to
a

cm-t

C
I0.15
0.1

)

Fig. 3 Segmentation results generated from a STE-MR images and b CT images. ¢ The difference between segmentation
results of CT and STE-MR images for the same slices of Fig. 2. The segmented regions (air, bone, and soft tissue) for MR- and
CT-based segmentation images are assigned the related attenuation numbers. The color bars in difference maps represent
errors of MR-based attenuation maps with respect to the corresponding CT-based attenuation maps.
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Fig. 4 The p-maps derived from a STE-MR images and b CT images. ¢ The difference between CT- and MR-derived p-maps
for the same slices of Fig. 2. The color bars in difference maps represent errors of MR-based attenuation maps with respect to

the corresponding CT-based attenuation maps.

investigate the competing role of MR-derived with CT-
derived p-maps. The proposed combined STE-MR imaging
and automatic segmentation approach resulted in accuracy
and specificity values of over 90 and 92 % in all regions,
respectively, and a sensitivity of 88 % for air, 94 % for the
soft tissue, and 74 % for cortical bone region. A recent study
by Khateri et al. reported sensitivity of 92 % for air, 95 %
for soft tissue, and 75 % for cortical bone [14]. While the
results achieved by our proposed method are generally

comparable to those achieved by Khateri et al., we claim that
the three-phase level-set segmentation algorithm exploited in
our work is straightforward, automatic, and reproducible.
This approach neither involves extensive image processing
procedures including morphological operators nor requires
incorporating several images acquired by STE/Dixon tech-
nique followed by subtraction and intersection operations for
reaching the final result as in [14]. As we have indicated in
Fig. 5, only 4 % of air misclassification belongs to the
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88%
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% Correctly/Incorrectly Classified
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Fig. 5 The diagram representing the percentages of cor-
rectly and mistakenly classified voxels.

cortical bone class. About 5 % of air region is misclassified
in the soft tissue category, which is a result of employing
low spatial resolution ultra-low-dose CT images as a
reference of comparison. About 23 % of cortical bone being
misclassified as soft tissue and 5 % of soft tissue being
categorized as cortical bone is comparable to the achieved
results in related works. In the work by Khateri et al., 24 %
of cortical bone was assigned to soft tissue and 4 % of soft
tissue was misclassified as cortical bone [14], while
Keereman et al. reported 25 % of bone having been
misclassified as soft tissue and 20 % of soft tissue as bone,
employing a UTE-based attenuation correction approach
[17].

In a study proposed by An et al., a two-phase region-
based level-set segmentation approach has been applied on
UTE-MR images of the head incorporated with morpholog-
ical operators, subtraction, and intersection of two UTE
images to achieve classification of air, bone, and soft tissue
classes [30]. The accuracy of the segmentation approach has
not been directly reported but visual inspection of the results
indicates misclassification of bone regions as soft or air
regions as well as discontinued cortical bone in few areas.
The three-phase level-set method in conjunction with single
STE-MR imaging proposed in our work seems to outper-
form the mentioned study in reducing the computational
burden by employing simpler framework as well as
imposing less imaging complexity by clinically feasible
single STE-MR imaging.

The results suggest that STE-MRI can provide compara-
ble accuracy and reliable agreement with CT images. This
approach could also be proposed as an alternation to UTE
MR imaging or combined STE/Dixon imaging technique in
PET attenuation correction, as it offers feasible properties in
the sense that this approach can be applied using a clinically
applicable protocol (unlike UTE-MRI [13, 17]) and a single
STE image (unlike combined STE/Dixon technique) with
comparable accuracy.

This is worth mentioning that we have employed a
clinical MR pulse sequence, which can easily be

incorporated in a routine clinical imaging session. This is
while application of UTE-MRI in clinics is still a matter of
controversy, as its implementation requires complicated
hardware. Accordingly, the proposed scheme in this paper
could be used as a reliable alternative to UTE-based
attenuation correction methods. On a related note, unlike
previous works where the accuracy of tissue segmentation
has been performed on a selected region of interest [17], we
have calculated the accuracy of tissue segmentation on the
total slice and yet have achieved close outcomes in tissue
segmentation to the mentioned studies.

As it can be observed in the difference maps of STE-
MR and CT segmentations and p-maps, ethmoid sinuses
exhibit more errors in attenuation correction procedure.
This could be majorly attributed to unavoidable suscepti-
bility artifact in MR images in the bone-air interface.
Furthermore, existence of fewer bone voxels in these
regions causes small variations to induce large changes in
sensitivity of cortical bone segmentation. However,
ULDCT imaging produces images with ambiguous borders
between cortical bone and air or soft tissue regions; i.e.,
the sensitivity of bone detection in ULDCT imaging
becomes deteriorated and therefore cannot be adopted as
the “gold standard” of comparison. This can be inferred by
visual inspection of ULDCT images and comparison with
corresponding STE-MR images as illustrated in Fig. 2
(also confirmed by an expert radiologist). Interestingly,
according to the quantitative evaluation results of Fig. 5
(sensitivity of segmented regions), some parts of CT
cortical bone regions are attributed to MR soft tissue
regions. As MRI provides superior soft tissue contrast in
contrast to CT images, this misclassification is due to
inaccuracy of ULDCT in providing differentiation of bone
and soft tissue regions. Therefore, the raised error in
discrimination of cortical bone from proximal air or soft
tissue regions is partly due to reduced sensitivity of
ULDCT images, being employed as standard of compar-
ison for STE-MR imaging. Nonetheless, this imaging is the
best evaluation standard which can be employed when
normal volunteers are being investigated.

This problem becomes less severe after generating p-
maps, as the resulting p-maps are constructed by down-
sampling and applying smoothing filter to the segmented
images, and therefore, the differences among CT- and MR-
based p-maps significantly reduce and their similarities
increase. This inquiry was approved by computing histo-
grams of CT- and MR-derived p-maps (Fig. 6) and
indicating that the p-maps are very similar in the spatial
distribution of image intensities. This was further confirmed
by quantitative assessment presented in Table 4. The
proximity of the histogram means and standard deviation
(contrast) of the two pu-maps is representative of their similar
distribution over the range of image intensities. Similar
values of normalized variance of the two histograms
demonstrate that the two p-maps have almost equally
smoothed distributions. Interrogation of skewness, energy,



A.F. Kazerooni et al.: Single STE-MRI for MR-Based Attenuation Correction of PET Data

a 9000

8000

7000

6000

5000

4000

Control

3000

2000

1000

0 0.02 0.04 0.06 0.08

0.1 0.12 0.14 0.16 0.18

Range of CT-derived u-map Intensity Values

t) 9000 T T T

8000

7000

6000

5000

Control

4000

3000

2000

1000

0 0.02 0.04 0.06 0.08

0.1 0.12 0.14 0.16 0.18

Range of CT-derived p-map Intensity Values
Fig. 6 Histograms of a CT- and b MR-based p-maps, where the intensity values of CT-/MR-based p-maps are accumulated to

represent an overall histogram.

and entropy features in the two p-maps indicates equal
symmetry, homogeneity (uniformity), and degree of irregu-
larities of image intensities in both histograms which further
confirms that the two histogram shapes are closely equal and
can be employed interchangeably.

Nonetheless, some limitations of this study should be
outlined here. First, this work was a pilot study performed
with small study subjects. Therefore, to generalize this
method, it is essential to validate it on more subjects and
patients. Second, to follow regulations of the report by

International Commission on Radiation Protection (ICRP)
about the safe CT dose range for normal volunteers, ULDCT
images were acquired and inevitably, low spatial resolution
of ULDCT images with unclear borders between bone and
soft tissues may have contributed to suboptimal sensitivity
of bone discrimination. In our future works including
patients, this validation can be more confidently performed
using high-resolution CT images acquired as the standard
pre-surgical imaging protocol for patients undergoing head
surgeries.

Table 4. Quantitative values of histogram features of MR- and CT-derived p-maps

Mean Contrast Smoothness Skewness Uniformity Entropy
MR-derived p-map 4.06 9.72 0.00145 0.030 0.7021 1.215
CT-derived p-map 4.07 9.79 0.00147 0.031 0.7028 1.210




A.F. Kazerooni et al.: Single STE-MRI for MR-Based Attenuation Correction of PET Data

Conclusion

Accurate segmentation of air-bone interface has a major
impact on MRI-based attenuation correction of PET images
and consequently on achieving meaningful qualitative and
quantitative PET image interpretation [10]. In the presented
work, it was shown that the challenging task of air and bone
discrimination, which becomes further complicated by MRI
field inhomogeneity, can be resolved in a unified level-set
segmentation and intensity inhomogeneity correction
scheme on a single clinical MR pulse sequence, the so-
called short-TE (STE) imaging method. This approach can
reliably discriminate bony structures from the proximal air
and soft tissue in STE-MR images, which is suitable for
generating MR-based p-maps.
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